Esempio n. 1
0
    def map(self, fcn, incols, outcols, dview=None):
        """Evaluates a function for each particle, based on that particle and its
        neighbors.

        :param fcn: function to be called with ``data[i]``, ``data[nn_i]`` as arguments, 
            where ``data[nn_i]`` is a 2D array
        :param incols: list of column names in the original DataFrame, corresponding
            to the columns passed to ``fcn``.
        :param outcols: list of new column names, in which the value(s) returned by ``fcn``
            will be inserted.
        :param dview: optional IPython parallel direct view.
        
        Returns a copy of the original tracks DataFrame, with new columns from ``outcols``.
        """
        # Design notes:
        # - Things go the fastest and work the best when we send numpy arrays to the engines.
        #   In other words, avoid pickling at all costs.
        # - Pandas objects are slow. The algorithm should work with plain numpy arrays;
        #   we convert back to DataFrames at the end.
        alldata = self.frametracks[incols].values
        allresults = np.ones((alldata.shape[0], len(outcols))) * np.nan

        def worker(fcn, data, loopindices, coords, nncutoff, n_output_cols):
            # This runs only once on each engine so it's ok to have all this setup code
            import numpy as np
            import scipy.spatial.ckdtree
            tree = scipy.spatial.ckdtree.cKDTree(coords, 5)
            results = np.ones((len(loopindices), n_output_cols)) * np.nan
            neighborlist = tree.query_ball_point(coords[loopindices], nncutoff)
            for i, (pindex,
                    neighbors) in enumerate(zip(loopindices, neighborlist)):
                neighbors.remove(pindex)
                results[i] = fcn(data[pindex], data[neighbors])
            return results

        if dview is None:
            allresults[self.loopindices] = worker(fcn, alldata,
                                                  self.loopindices,
                                                  self.coords, self.nncutoff,
                                                  len(outcols))
        else:
            from IPython.parallel.util import interactive
            dview.execute('''import numpy as np''')
            # To send function to engines, its parent namespace must be the global namespace.
            dview['worker'] = interactive(worker)
            dview['fcn'] = interactive(fcn)
            dview['data'] = alldata
            dview.scatter('loopindices', self.loopindices)
            dview['coords'] = self.coords
            dview['nncutoff'] = self.nncutoff
            dview['n_output_cols'] = len(outcols)
            dview.execute(
                '''results = worker(fcn, data, loopindices, coords, nncutoff, n_output_cols)'''
            )
            allresults[self.loopindices] = dview.gather('results', block=True)
        rtr = self.frametracks.copy()
        for i, name in enumerate(outcols):
            rtr[name] = allresults[:, i]
        return rtr
Esempio n. 2
0
    def map(self, fcn, incols, outcols, dview=None):
        """Evaluates a function for each particle, based on that particle and its
        neighbors.

        :param fcn: function to be called with ``data[i]``, ``data[nn_i]`` as arguments, 
            where ``data[nn_i]`` is a 2D array
        :param incols: list of column names in the original DataFrame, corresponding
            to the columns passed to ``fcn``.
        :param outcols: list of new column names, in which the value(s) returned by ``fcn``
            will be inserted.
        :param dview: optional IPython parallel direct view.
        
        Returns a copy of the original tracks DataFrame, with new columns from ``outcols``.
        """
        # Design notes:
        # - Things go the fastest and work the best when we send numpy arrays to the engines.
        #   In other words, avoid pickling at all costs.
        # - Pandas objects are slow. The algorithm should work with plain numpy arrays;
        #   we convert back to DataFrames at the end.
        alldata = self.frametracks[incols].values
        allresults = np.ones((alldata.shape[0], len(outcols))) * np.nan
        def worker(fcn, data, loopindices, coords, nncutoff, n_output_cols):
            # This runs only once on each engine so it's ok to have all this setup code
            import numpy as np
            import scipy.spatial.ckdtree
            tree = scipy.spatial.ckdtree.cKDTree(coords, 5)
            results = np.ones((len(loopindices), n_output_cols)) * np.nan
            neighborlist = tree.query_ball_point(coords[loopindices], nncutoff)
            for i, (pindex, neighbors) in enumerate(zip(loopindices, neighborlist)):
                neighbors.remove(pindex)
                results[i] = fcn(data[pindex], data[neighbors])
            return results
        if dview is None:
            allresults[self.loopindices] = worker(fcn, alldata, self.loopindices, self.coords, self.nncutoff, len(outcols))
        else:
            from IPython.parallel.util import interactive
            dview.execute('''import numpy as np''')
            # To send function to engines, its parent namespace must be the global namespace. 
            dview['worker'] = interactive(worker)
            dview['fcn'] = interactive(fcn)
            dview['data'] = alldata
            dview.scatter('loopindices', self.loopindices)
            dview['coords'] = self.coords
            dview['nncutoff'] = self.nncutoff
            dview['n_output_cols'] = len(outcols)
            dview.execute('''results = worker(fcn, data, loopindices, coords, nncutoff, n_output_cols)''')
            allresults[self.loopindices] = dview.gather('results', block=True)
        rtr = self.frametracks.copy()
        for i, name in enumerate(outcols):
            rtr[name] = allresults[:,i]
        return rtr
Esempio n. 3
0
def compute_parallel(cache,
                     func,
                     keys,
                     save_every=4,
                     func_args=None,
                     func_kwargs=None,
                     parallel=True,
                     client=None):
    """Do a parallel computation of a function"""
    keys = [key for key in keys]
    results = dict(cache.items())
    print(50 * '=')
    print("Starting parallel run of {0} results".format(len(keys)))
    print(" - parallel={0}".format(parallel))

    if results:
        print(" - found {0} previous results in {1}"
              "".format(len(results), cache.filename))
    keys_to_compute = [key for key in keys if key not in results]

    # default arguments
    def iter_function(key,
                      func=func,
                      func_args=func_args,
                      func_kwargs=func_kwargs):
        func_args = func_args or ()
        func_kwargs = func_kwargs or {}
        return func(key, *func_args, **func_kwargs)

    print(" - computing {0} results".format(len(keys_to_compute)))

    # Set up the iterator over results
    if parallel:
        # Use interactive to prevent namespace issues
        from IPython.parallel.util import interactive
        iter_function = interactive(iter_function)
        if client is None:
            from IPython.parallel import Client
            client = Client()
        lbv = client.load_balanced_view()
        results_iter = lbv.imap(iter_function, keys_to_compute, ordered=False)
    else:
        results_iter = imap(iter_function, keys_to_compute)

    # Do the iteration, saving the results occasionally
    print(datetime.now())
    for i, (key, result) in enumerate(results_iter):
        print('{0}/{1}: {2}'.format(i + 1, len(keys_to_compute), result))
        print(' {0}'.format(datetime.now()))
        cache.add_row(key, result, save=((i + 1) % save_every == 0))
    cache.save()

    return np.array([cache.get_row(key) for key in keys])
Esempio n. 4
0
 def _affine_field(self, d2min_scale=1.0, dview=None):
     # Highly-optimized affine field computation, using a direct line to FORTRAN (LAPACK).
     # The prototype for this design is the map() method.
     def worker(data, loopindices, coords, nncutoff):
         # This runs only once on each engine so it's ok to have all this setup code
         tree = scipy.spatial.cKDTree(coords, 5) # 5 levels in the tree. YMMV.
         # Laughing in the face of danger, we use the Fortran linear system solver directly.
         solver, = scipy.linalg.lapack.get_lapack_funcs(('gelss',), (data, data))
         results = np.ones((len(loopindices), 5)) * np.nan # 5 output columns
         neighborlist = tree.query_ball_point(coords[loopindices], nncutoff)
         for i, (pindex, neighbors) in enumerate(zip(loopindices, neighborlist)):
             neighbors.remove(pindex)
             if len(neighbors) < 2: continue  # Minimum to satisfy DOF
             r = data[neighbors] - np.tile(data[pindex], (len(neighbors), 1))
             # The rest of the loop body is computation-specific.
             try:
                 solvret = solver(r[:,0:2], r[:,2:4]) # v, x, s, rank, work, info
                 assert solvret[5] == 0 # "info"
             except:
                 continue # Did not converge or not enough data; results will be NaN
             results[i,:4] = solvret[1][:2].flat
             # NORMALIZE by number of particles
             results[i,4] = (solvret[1][2:]**2).sum() / len(neighbors) 
             # Uncommenting the assert below checks that D2min is equal to the residual.
             #assert np.allclose(results[i,4], np.sum((r[:,0:2].dot(gelret[1][:2]) \
                     #- r[:,2:4])**2) / len(neighbors)) 
         return results
     alldata = self.frametracks[['x', 'y', 'x0', 'y0']].values
     allresults = np.ones((alldata.shape[0], 5)) * np.nan
     if dview is None:
         # Single-threaded
         allresults[self.loopindices] = worker(alldata, self.loopindices, self.coords, self.nncutoff)
     else: # IPython parallel computing
         from IPython.parallel.util import interactive
         dview.execute('''import scipy.linalg.lapack, scipy.spatial''')
         dview.execute('''import numpy as np''')
         # To send function to engines, its parent namespace must be the global namespace. 
         dview['worker'] = interactive(worker)
         dview['data'] = alldata
         # Each engine considers a different set of particles
         dview.scatter('loopindices', self.loopindices) 
         dview['coords'] = self.coords
         dview['nncutoff'] = self.nncutoff
         dview.execute('''results = worker(data, loopindices, coords, nncutoff)''')
         allresults[self.loopindices] = dview.gather('results', block=True)
     rtr = self.frametracks.copy()
     for i, name in enumerate(['xdil', 'vstrain', 'hstrain', 'ydil', 'd2min']):
         rtr[name] = allresults[:,i]
     # FURTHER NORMALIZE by interparticle distance, if provided.
     rtr['d2min'] = rtr.d2min / d2min_scale**2
     return rtr
Esempio n. 5
0
 def _affine_field(self, d2min_scale=1.0, dview=None):
     # Highly-optimized affine field computation, using a direct line to FORTRAN (LAPACK).
     # The prototype for this design is the map() method.
     def worker(data, loopindices, coords, nncutoff):
         # This runs only once on each engine so it's ok to have all this setup code
         tree = scipy.spatial.cKDTree(coords, 5) # 5 levels in the tree. YMMV.
         # Laughing in the face of danger, we use the Fortran linear system solver directly.
         solver, = scipy.linalg.lapack.get_lapack_funcs(('gelss',), (data, data))
         results = np.ones((len(loopindices), 5)) * np.nan # 5 output columns
         neighborlist = tree.query_ball_point(coords[loopindices], nncutoff)
         for i, (pindex, neighbors) in enumerate(zip(loopindices, neighborlist)):
             neighbors.remove(pindex)
             if len(neighbors) < 2: continue  # Minimum to satisfy DOF
             r = data[neighbors] - np.tile(data[pindex], (len(neighbors), 1))
             # The rest of the loop body is computation-specific.
             try:
                 solvret = solver(r[:,0:2], r[:,2:4]) # v, x, s, rank, work, info
                 assert solvret[5] == 0 # "info"
             except:
                 continue # Did not converge or not enough data; results will be NaN
             results[i,:4] = solvret[1][:2].flat
             # NORMALIZE by number of particles
             results[i,4] = (solvret[1][2:]**2).sum() / len(neighbors) 
             # Uncommenting the assert below checks that D2min is equal to the residual.
             #assert np.allclose(results[i,4], np.sum((r[:,0:2].dot(gelret[1][:2]) \
                     #- r[:,2:4])**2) / len(neighbors)) 
         return results
     alldata = self.frametracks[['x', 'y', 'x0', 'y0']].values
     allresults = np.ones((alldata.shape[0], 5)) * np.nan
     if dview is None:
         # Single-threaded
         allresults[self.loopindices] = worker(alldata, self.loopindices, self.coords, self.nncutoff)
     else: # IPython parallel computing
         from IPython.parallel.util import interactive
         dview.execute('''import scipy.linalg.lapack, scipy.spatial''')
         dview.execute('''import numpy as np''')
         # To send function to engines, its parent namespace must be the global namespace. 
         dview['worker'] = interactive(worker)
         dview['data'] = alldata
         # Each engine considers a different set of particles
         dview.scatter('loopindices', self.loopindices) 
         dview['coords'] = self.coords
         dview['nncutoff'] = self.nncutoff
         dview.execute('''results = worker(data, loopindices, coords, nncutoff)''')
         allresults[self.loopindices] = dview.gather('results', block=True)
     rtr = self.frametracks.copy()
     for i, name in enumerate(['xdil', 'vstrain', 'hstrain', 'ydil', 'd2min']):
         rtr[name] = allresults[:,i]
     # FURTHER NORMALIZE by interparticle distance, if provided.
     rtr['d2min'] = rtr.d2min / d2min_scale**2
     return rtr
Esempio n. 6
0
def compute_parallel(cache, func, keys, save_every=4,
                     func_args=None, func_kwargs=None,
                     parallel=True, client=None):
    """Do a parallel computation of a function"""
    keys = [key for key in keys]
    results = dict(cache.items())
    print(50 * '=')
    print("Starting parallel run of {0} results".format(len(keys)))
    print(" - parallel={0}".format(parallel))

    if results:
        print(" - found {0} previous results in {1}"
              "".format(len(results), cache.filename))
    keys_to_compute = [key for key in keys if key not in results]

    # default arguments
    def iter_function(key, func=func, func_args=func_args,
                      func_kwargs=func_kwargs):
        func_args = func_args or ()
        func_kwargs = func_kwargs or {}
        return func(key, *func_args, **func_kwargs)

    print(" - computing {0} results".format(len(keys_to_compute)))

    # Set up the iterator over results
    if parallel:
        # Use interactive to prevent namespace issues
        from IPython.parallel.util import interactive
        iter_function = interactive(iter_function)
        if client is None:
            from IPython.parallel import Client
            client = Client()
        lbv = client.load_balanced_view()
        results_iter = lbv.imap(iter_function, keys_to_compute,
                                ordered=False)
    else:
        results_iter = imap(iter_function, keys_to_compute)

    # Do the iteration, saving the results occasionally
    print(datetime.now())
    for i, (key, result) in enumerate(results_iter):
        print('{0}/{1}: {2}'.format(i + 1, len(keys_to_compute), result))
        print(' {0}'.format(datetime.now()))
        cache.add_row(key, result, save=((i + 1) % save_every == 0))
    cache.save()

    return np.array([cache.get_row(key) for key in keys])
Esempio n. 7
0
    def line_pmap(self, function_name, args, kernel_name=None):
        """
        %pmap FUNCTION [ARGS1,ARGS2,...] - ("parallel map") call a FUNCTION on args

        This line magic will apply a function name to all of the
        arguments given one at a time using a dynamic load balancing scheduler.

        Currently, the args are provided as a Python expression (with no spaces).

        You must first setup a cluster using the %parallel magic.

        Examples:

            %pmap function-name-in-language range(10)
            %pmap function-name-in-language [1,2,3,4]
            %pmap run_experiment range(1,100,5)
            %pmap run_experiment ["test1","test2","test3"]
            %pmap f [(1,4,7),(2,3,5),(7,2,2)]

        The function name must be a function that is available on all
        nodes in the cluster. For example, you could:

            %%px
            (define myfunc
               (lambda (n)
                 (+ n 1)))

        to define myfunc on all machines (use %%px -e to also define
        it in the running notebook or console). Then you can apply it
        to a list of arguments:

            %%pmap myfunc range(100)

        The load balancer will run myfunc on the next available node
        in the cluster.

        Note: not all languages may support running a function via this magic.
        """
        if kernel_name is None:
            kernel_name = self.kernel_name

        # To make sure we can find `kernels`:
        from IPython.parallel.util import interactive
        f = interactive(lambda arg, kname=kernel_name, fname=function_name: \
                        kernels[kname].do_function_direct(fname, arg))
        self.retval = self.view_load_balanced.map_async(f, eval(args))
Esempio n. 8
0
    def line_pmap(self, function_name, args, kernel_name=None):
        """
        %pmap FUNCTION [ARGS1,ARGS2,...] - ("parallel map") call a FUNCTION on args

        This line magic will apply a function name to all of the
        arguments given one at a time using a dynamic load balancing scheduler.

        Currently, the args are provided as a Python expression (with no spaces).

        You must first setup a cluster using the %parallel magic.

        Examples:

            %pmap function-name-in-language range(10)
            %pmap function-name-in-language [1,2,3,4]
            %pmap run_experiment range(1,100,5)
            %pmap run_experiment ["test1","test2","test3"]
            %pmap f [(1,4,7),(2,3,5),(7,2,2)]

        The function name must be a function that is available on all
        nodes in the cluster. For example, you could:

            %%px
            (define myfunc
               (lambda (n)
                 (+ n 1)))

        to define myfunc on all machines (use %%px -e to also define
        it in the running notebook or console). Then you can apply it
        to a list of arguments:

            %%pmap myfunc range(100)

        The load balancer will run myfunc on the next available node
        in the cluster.

        Note: not all languages may support running a function via this magic.
        """
        if kernel_name is None:
            kernel_name = self.kernel_name

        # To make sure we can find `kernels`:
        from IPython.parallel.util import interactive
        f = interactive(lambda arg, kname=kernel_name, fname=function_name: \
                        kernels[kname].do_function_direct(fname, arg))
        self.retval = self.view_load_balanced.map_async(f, eval(args))
Esempio n. 9
0
    def test_push_pull_recarray(self):
        """push/pull recarrays"""
        import numpy
        from numpy.testing.utils import assert_array_equal

        view = self.client[-1]

        R = numpy.array(
            [(1, "hi", 0.0), (2 ** 30, "there", 2.5), (-99999, "world", -12345.6789)],
            [("n", int), ("s", "|S10"), ("f", float)],
        )

        view["RR"] = R
        R2 = view["RR"]

        r_dtype, r_shape = view.apply_sync(interactive(lambda: (RR.dtype, RR.shape)))
        self.assertEqual(r_dtype, R.dtype)
        self.assertEqual(r_shape, R.shape)
        self.assertEqual(R2.dtype, R.dtype)
        self.assertEqual(R2.shape, R.shape)
        assert_array_equal(R2, R)
Esempio n. 10
0
 def test_push_pull_recarray(self):
     """push/pull recarrays"""
     import numpy
     from numpy.testing.utils import assert_array_equal
     
     view = self.client[-1]
     
     R = numpy.array([
         (1, 'hi', 0.),
         (2**30, 'there', 2.5),
         (-99999, 'world', -12345.6789),
     ], [('n', int), ('s', '|S10'), ('f', float)])
     
     view['RR'] = R
     R2 = view['RR']
     
     r_dtype, r_shape = view.apply_sync(interactive(lambda : (RR.dtype, RR.shape)))
     self.assertEqual(r_dtype, R.dtype)
     self.assertEqual(r_shape, R.shape)
     self.assertEqual(R2.dtype, R.dtype)
     self.assertEqual(R2.shape, R.shape)
     assert_array_equal(R2, R)
Esempio n. 11
0
 def test_push_pull_recarray(self):
     """push/pull recarrays"""
     import numpy
     from numpy.testing.utils import assert_array_equal
     
     view = self.client[-1]
     
     R = numpy.array([
         (1, 'hi', 0.),
         (2**30, 'there', 2.5),
         (-99999, 'world', -12345.6789),
     ], [('n', int), ('s', '|S10'), ('f', float)])
     
     view['RR'] = R
     R2 = view['RR']
     
     r_dtype, r_shape = view.apply_sync(interactive(lambda : (RR.dtype, RR.shape)))
     self.assertEqual(r_dtype, R.dtype)
     self.assertEqual(r_shape, R.shape)
     self.assertEqual(R2.dtype, R.dtype)
     self.assertEqual(R2.shape, R.shape)
     assert_array_equal(R2, R)