Esempio n. 1
0
def test_load_single_item_6() -> None:
    """
    Test loading of different channels for different categorical features.
    """
    csv_string = StringIO("""subject,path,channel,cat1,cat2,scalar1,label
S1,foo1.nii,week1,True,True,1.2,True
S1,foo2.nii,week2,False,False,1.2,True
S1,foo2.nii,week3,False,True,1.3,True
""")
    df = pd.read_csv(csv_string, sep=",", dtype=str)
    item: ScalarDataSource = load_single_data_source(df,
                                                     subject_id="S1",
                                                     image_channels=["week1"],
                                                     image_file_column="path",
                                                     label_channels=["week1"],
                                                     label_value_column="label",
                                                     numerical_columns=["scalar1"],
                                                     non_image_feature_channels={"scalar1": ["week3"],
                                                                                 "cat1": ["week1", "week2"],
                                                                                 "cat2": ["week3"]},
                                                     categorical_data_encoder=CategoricalToOneHotEncoder.create_from_dataframe(
                                                         dataframe=df,
                                                         columns=["cat1", "cat2"]
                                                     ),
                                                     channel_column="channel")
    assert torch.all(item.categorical_non_image_features == torch.tensor([0, 1, 1, 0, 0, 1]))
Esempio n. 2
0
def test_load_single_item_1() -> None:
    """
    Test if we can create a classificationItem from the rows for a single subject,
    including NaN scalar and categorical values.
    """
    csv_string = StringIO("""subject,channel,path,value,scalar1,scalar2,categorical1,categorical2
S1,image1,foo1.nii,,2.1,2.2,True,False
S1,image2,foo2.nii,,3.1,,True,False
S1,label,,True,1.1,1.2,,False
""")
    df = pd.read_csv(csv_string, sep=",", dtype=str)
    numerical_columns = ["scalar2", "scalar1"]
    categorical_columns = ["categorical1", "categorical2"]
    non_image_feature_channels = _get_non_image_dict(["label", "image2"],
                                                     ["scalar2", "scalar1"],
                                                     ["categorical1", "categorical2"])
    item: ScalarDataSource = load_single_data_source(df,
                                                     subject_id="S1",
                                                     # Provide values in a different order from the file!
                                                     image_channels=["image2", "image1"],
                                                     image_file_column="path",
                                                     label_channels=["label"],
                                                     label_value_column="value",
                                                     non_image_feature_channels=non_image_feature_channels,
                                                     # Provide values in a different order from the file!
                                                     numerical_columns=numerical_columns,
                                                     categorical_data_encoder=CategoricalToOneHotEncoder.create_from_dataframe(
                                                         dataframe=df,
                                                         columns=categorical_columns
                                                     ),
                                                     channel_column="channel")
    assert item.channel_files[0] == "foo2.nii"
    assert item.channel_files[1] == "foo1.nii"
    assert item.label == torch.tensor([1.0])
    assert item.label.dtype == torch.float32
    assert item.numerical_non_image_features[0] == 1.2
    assert item.numerical_non_image_features[2] == 1.1
    assert item.numerical_non_image_features[3] == 3.1
    assert math.isnan(item.numerical_non_image_features[1].item())
    assert np.all(np.isnan(item.categorical_non_image_features[0].numpy()))
    assert item.categorical_non_image_features[1:].tolist() == [1.0, 1.0, 1.0]
    assert item.numerical_non_image_features.dtype == torch.float32

    item_no_scalars: ScalarDataSource = load_single_data_source(df,
                                                                subject_id="S1",
                                                                # Provide values in a different order from the file!
                                                                image_channels=["image2", "image1"],
                                                                image_file_column="path",
                                                                label_channels=["label"],
                                                                label_value_column="value",
                                                                non_image_feature_channels={},
                                                                numerical_columns=[],
                                                                channel_column="channel")
    assert item_no_scalars.numerical_non_image_features.shape == (0,)
 def pre_process_dataset_dataframe(self) -> None:
     # some empty values on numeric columns get converted to nan but we want ''
     assert self.dataset_data_frame is not None
     df = self.dataset_data_frame.fillna('')
     self.dataset_data_frame = self.filter_dataframe(df)
     # update the one-hot encoder based on this dataframe
     if self.categorical_columns:
         from InnerEye.ML.utils.dataset_util import CategoricalToOneHotEncoder
         self.categorical_feature_encoder = CategoricalToOneHotEncoder.create_from_dataframe(
             dataframe=self.dataset_data_frame,
             columns=self.categorical_columns)
 def __init__(self,
              use_combined_model: bool = False,
              imaging_feature_type: ImagingFeatureType = ImagingFeatureType.
              Image,
              combine_hidden_states: bool = False,
              use_encoder_layer_norm: bool = False,
              sequence_target_positions: Optional[List[int]] = None,
              use_mean_teacher_model: bool = False,
              **kwargs: Any) -> None:
     num_epochs = 3
     mean_teacher_alpha = 0.999 if use_mean_teacher_model else None
     sequence_target_positions = [
         2
     ] if sequence_target_positions is None else sequence_target_positions
     image_column = "image" if use_combined_model else None
     categorical_feature_encoder = CategoricalToOneHotEncoder.create_from_dataframe(
         dataframe=_get_mock_sequence_dataset(), columns=["cat1"])
     super().__init__(
         local_dataset=full_ml_test_data_path(
             "sequence_data_for_classification"),
         temperature_scaling_config=TemperatureScalingConfig(),
         label_value_column="label",
         numerical_columns=["numerical1", "numerical2"],
         categorical_columns=["cat1"],
         categorical_feature_encoder=categorical_feature_encoder,
         sequence_column="seqColumn",
         sequence_target_positions=sequence_target_positions,
         image_file_column=image_column,
         loss_type=ScalarLoss.WeightedCrossEntropyWithLogits,
         num_epochs=num_epochs,
         num_dataload_workers=0,
         train_batch_size=3,
         l_rate=1e-1,
         load_segmentation=True,
         use_mixed_precision=True,
         label_smoothing_eps=0.05,
         drop_last_batch_in_training=True,
         mean_teacher_alpha=mean_teacher_alpha,
         # Trying to run DDP from the test suite hangs, hence restrict to single GPU.
         max_num_gpus=1,
         **kwargs)
     self.use_combined_model = use_combined_model
     self.imaging_feature_type = imaging_feature_type
     self.combine_hidden_state = combine_hidden_states
     self.use_encoder_layer_norm = use_encoder_layer_norm
def test_load_single_item_7() -> None:
    """
    Test loading of different channels for different categorical features.
    Case where one column value is invalid.
    """
    # Fit the encoder on the valid labels.
    csv_string_valid = StringIO("""subject,path,channel,cat1,cat2,label
    S1,foo1.nii,week1,True,True,True
    S1,foo2.nii,week2,False,False,True
    S1,foo2.nii,week3,False,,True
    """)
    df = pd.read_csv(csv_string_valid, sep=",", dtype=str)
    encoder = CategoricalToOneHotEncoder.create_from_dataframe(
        dataframe=df, columns=["cat1", "cat2"])

    # Try to encode a dataframe with invalid value
    csv_string_invalid = StringIO("""subject,path,channel,cat1,cat2,label
    S1,foo1.nii,week1,True,True,True
    S1,foo2.nii,week2,houhou,False,False
    S1,foo2.nii,week3,False,,True
    """)
    df = pd.read_csv(csv_string_invalid, sep=",", dtype=str)
    item: ScalarDataSource = load_single_data_source(
        df,
        subject_id="S1",
        image_channels=["week1"],
        image_file_column="path",
        label_channels=["week1"],
        label_value_column="label",
        non_image_feature_channels={
            "cat1": ["week1", "week2"],
            "cat2": ["week3"]
        },
        categorical_data_encoder=encoder,
        channel_column="channel")
    # cat1 - week1 is valid
    assert torch.all(
        item.categorical_non_image_features[0:2] == torch.tensor([0, 1]))
    # cat1 - week2 is invalid test regression
    assert torch.all(torch.isnan(item.categorical_non_image_features[2:4]))
    # cat2 - week 3 is invalid
    assert torch.all(torch.isnan(item.categorical_non_image_features[4:6]))
Esempio n. 6
0
def test_visualization_with_scalar_model(use_non_imaging_features: bool,
                                         imaging_feature_type: ImagingFeatureType,
                                         encode_channels_jointly: bool,
                                         test_output_dirs: OutputFolderForTests) -> None:
    dataset_contents = """subject,channel,path,label,numerical1,numerical2,categorical1,categorical2
    S1,week0,scan1.npy,,1,10,Male,Val1
    S1,week1,scan2.npy,True,2,20,Female,Val2
    S2,week0,scan3.npy,,3,30,Female,Val3
    S2,week1,scan4.npy,False,4,40,Female,Val1
    S3,week0,scan1.npy,,5,50,Male,Val2
    S3,week1,scan3.npy,True,6,60,Male,Val2
    """
    dataset_dataframe = pd.read_csv(StringIO(dataset_contents), dtype=str)
    numerical_columns = ["numerical1", "numerical2"] if use_non_imaging_features else []
    categorical_columns = ["categorical1", "categorical2"] if use_non_imaging_features else []
    non_image_feature_channels = get_non_image_features_dict(default_channels=["week1", "week0"],
                                                             specific_channels={"categorical2": ["week1"]}) \
        if use_non_imaging_features else {}

    config = ImageEncoder(
        local_dataset=Path(),
        encode_channels_jointly=encode_channels_jointly,
        should_validate=False,
        numerical_columns=numerical_columns,
        categorical_columns=categorical_columns,
        imaging_feature_type=imaging_feature_type,
        non_image_feature_channels=non_image_feature_channels,
        categorical_feature_encoder=CategoricalToOneHotEncoder.create_from_dataframe(
            dataframe=dataset_dataframe, columns=categorical_columns)
    )

    dataloader = ScalarDataset(config, data_frame=dataset_dataframe) \
        .as_data_loader(shuffle=False, batch_size=2)

    config.set_output_to(test_output_dirs.root_dir)
    config.num_epochs = 1
    model = create_model_with_temperature_scaling(config)
    visualizer = VisualizationMaps(model, config)
    # Patch the load_images function that will be called once we access a dataset item
    image_and_seg = ImageAndSegmentations[np.ndarray](images=np.random.uniform(0, 1, (6, 64, 60)),
                                                      segmentations=np.random.randint(0, 2, (6, 64, 60)))
    with mock.patch('InnerEye.ML.utils.io_util.load_image_in_known_formats', return_value=image_and_seg):
        batch = next(iter(dataloader))
        if config.use_gpu:
            device = visualizer.grad_cam.device
            batch = transfer_batch_to_device(batch, device)
            visualizer.grad_cam.model = visualizer.grad_cam.model.to(device)
        model_inputs_and_labels = get_scalar_model_inputs_and_labels(model,
                                                                     target_indices=[],
                                                                     sample=batch)
    number_channels = len(config.image_channels)
    number_subjects = len(model_inputs_and_labels.subject_ids)
    guided_grad_cams, grad_cams, pseudo_cam_non_img, probas = visualizer.generate(
        model_inputs_and_labels.model_inputs)

    if imaging_feature_type == ImagingFeatureType.ImageAndSegmentation:
        assert guided_grad_cams.shape[:2] == (number_subjects, number_channels * 2)
    else:
        assert guided_grad_cams.shape[:2] == (number_subjects, number_channels)

    assert grad_cams.shape[:2] == (number_subjects, 1) if encode_channels_jointly \
        else (number_subjects, number_channels)

    if use_non_imaging_features:
        non_image_features = config.numerical_columns + config.categorical_columns
        non_imaging_plot_labels = visualizer._get_non_imaging_plot_labels(model_inputs_and_labels.data_item,
                                                                          non_image_features,
                                                                          index=0)
        assert non_imaging_plot_labels == ['numerical1_week1',
                                           'numerical1_week0',
                                           'numerical2_week1',
                                           'numerical2_week0',
                                           'categorical1_week1',
                                           'categorical1_week0',
                                           'categorical2_week1']
        assert pseudo_cam_non_img.shape == (number_subjects, 1, len(non_imaging_plot_labels))
Esempio n. 7
0
def test_one_hot_encoder_with_infinite_values() -> None:
    df = pd.DataFrame(columns=["categorical"])
    df["categorical"] = ["F", "M", np.inf]
    encoder = CategoricalToOneHotEncoder.create_from_dataframe(
        df, ["categorical"])
    assert np.isnan(encoder.encode({"categorical": np.inf})).all()