def test_01_gen_model(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        input_shape = (32, 32, 3)
        manager.gen_instance(model, input_shape)
Esempio n. 2
0
 def load_and_sampling(input_shapes=None,
                       visualizers=None,
                       metadata_path=None,
                       env_setting=None):
     manager = InstanceManager(env_setting)
     manager.load_instance(instance_path=metadata_path,
                           input_shapes=input_shapes)
     manager.load_visualizer(visualizers)
     manager.sampling_instance(is_restore=True)
Esempio n. 3
0
    def build_and_train(model=None,
                        input_shapes=None,
                        dataset=None,
                        visualizers=None,
                        epoch_time=50,
                        check_point_interval=5000):
        manager = InstanceManager()
        metadata_path = manager.build_instance(model)
        manager.load_instance(metadata_path, input_shapes)
        for visualizer, interval in visualizers:
            manager.load_visualizer(visualizer, interval)

        manager.train_instance(epoch_time,
                               dataset=dataset,
                               check_point_interval=check_point_interval)
        del manager
Esempio n. 4
0
def tf_model_train(model=None, dataset=None, visuliziers=None, epoch=None):
    dataset = DatasetLoader().load_dataset(dataset)
    input_shapes = dataset.train_set.input_shapes
    model = ModelClassLoader.load_model_class(model)

    manager = InstanceManager()
    metadata_path = manager.build_instance(model, input_shapes)
    manager.load_instance(metadata_path)

    for v_fun, i in visuliziers:
        manager.load_visualizer(VisualizerClassLoader.load(v_fun), i)

    manager.train_instance(epoch=epoch,
                           dataset=dataset,
                           check_point_interval=5000,
                           with_tensorboard=True)

    del manager
Esempio n. 5
0
    def test_03_train_model(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        manager.build_instance(model)

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)

        dataset = DummyDataset()
        epoch_time = 10
        manager.train_instance(dataset, epoch_time)
    def test_03_train_model(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        input_shape = (32, 32, 3)
        manager.gen_instance(model, input_shape)

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)

        dataset = DummyDataset()
        epoch_time = 10
        manager.train_model(dataset, epoch_time)
def f():
    path = ROOT_PATH
    manager = InstanceManager(path)

    model = DummyModel
    input_shape = (32, 32, 3)
    manager.gen_instance(model, input_shape)

    visualizers = [
        (dummy_log, 10),
    ]
    manager.load_visualizer(visualizers)

    dataset = DummyDataset()
    epoch_time = 1
    check_point_interval = 500
    manager.train_model(dataset, epoch_time, check_point_interval)
Esempio n. 8
0
    def test_04_save_model(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        manager.build_instance(model)

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)

        dataset = DummyDataset()
        epoch_time = 10
        check_point_interval = 2
        manager.train_instance(dataset, epoch_time, check_point_interval)
Esempio n. 9
0
    def test_02_load_visualizer(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        manager.build_instance(model)

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)
Esempio n. 10
0
    def test_02_load_visualizer(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        input_shape = (32, 32, 3)
        manager.gen_instance(model, input_shape)

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)
Esempio n. 11
0
# build model
from model.ModelClassLoader import ModelClassLoader
from InstanceManger import InstanceManager

model = ModelClassLoader.load_model_class("model")
manager = InstanceManager()
model_metadata_path = manager.build_instance(model)

# load model
# after build model
manager.load_instance(model_metadata_path, input_shapes_from_dataset)

# load visualizer
# feed visualizer_class
from visualizer.VisualizerClassLoader import VisualizerClassLoader

visualizer = VisualizerClassLoader.load("visualizer_name")
manager.load_visualizer(visualizer, execute_interval=10)

# train model
# after load instance into manager train model
manager.train_instance(
    epoch_time,
    dataset=dataset,
    check_point_interval=check_point_interval,
    # if need to start train from checkpoint
    # set is_restore to True
    # is_restore=True

    # default to start with tensorboard sub process while train instance and after train instance close tensorboard
    # if does not need tensorboard set with_tensorboard to False
Esempio n. 12
0
import os


class dummy_log(AbstractPrintLog):
    def task(self, sess=None, iter_num=None, model=None, dataset=None):
        super().task(sess, iter_num, model, dataset)
        self.log('this is dummy log')


if __name__ == '__main__':
    root_path = ROOT_PATH
    LLD_PATH = os.path.join(root_path, 'dataset', 'LLD')
    lld_data = LLD()
    lld_data.load(LLD_PATH)

    manager = InstanceManager(ROOT_PATH)

    input_shape = [32, 32, 3]
    model = GAN
    manager.gen_instance(model, input_shape)
    metadata_path = manager.metadata_path

    iter_cycle = 10
    visualizers = [(dummy_log, iter_cycle)]
    manager.load_visualizer(visualizers)

    epoch_time = 10
    check_point_interval_per_iter = 5000
    manager.train_model(lld_data, epoch_time, check_point_interval_per_iter)
Esempio n. 13
0
    def test_05_load_model(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        input_shape = (32, 32, 3)
        manager.gen_instance(model, input_shape)
        meta_data_path = manager.metadata_path

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)

        dataset = DummyDataset()
        epoch_time = 10
        check_point_interval = 2
        manager.train_model(dataset, epoch_time, check_point_interval)

        #
        manager = InstanceManager(path)
        manager.load_model(meta_data_path, input_shape)

        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)

        dataset = DummyDataset()
        epoch_time = 10
        check_point_interval = 2
        manager.train_model(dataset, epoch_time, check_point_interval)
Esempio n. 14
0
    def test_01_gen_model(self):
        path = ROOT_PATH
        manager = InstanceManager(path)

        model = DummyModel
        manager.build_instance(model)
Esempio n. 15
0
        visualizer_1 = DummyVisualizer_1
        visualizer_2 = DummyVisualizer_2

        visualizers = [visualizer_1, visualizer_2]
        manager.load_visualizer(visualizers)

        dataset = DummyDataset()
        epoch_time = 10
        check_point_interval = 2
        manager.train_instance(dataset, epoch_time, check_point_interval)


if __name__ == '__main__':
    path = ROOT_PATH
    manager = InstanceManager(path)

    model = DummyModel
    input_shape = (32, 32, 3)
    manager.build_instance(model)

    visualizers = [
        (dummy_log, 10),
    ]
    manager.load_visualizer(visualizers)

    dataset = DummyDataset()
    epoch_time = 1
    check_point_interval = 500
    manager.train_instance(dataset, epoch_time, check_point_interval)
Esempio n. 16
0
 def test_00_init(self):
     path = ROOT_PATH
     InstanceManager(path)
Esempio n. 17
0
 def test_models(model_list=None, input_shapes=None, env_setting=None):
     for model in model_list:
         manager = InstanceManager(env_setting)
         manager.gen_instance(model, input_shapes)
         del manager
Esempio n. 18
0
    def load_model_and_train(input_shapes=None, visualizers=None, metadata_path=None, env_setting=None, dataset=None,
                             epoch_time=50, check_point_interval_per_iter=5000):
        manager = None
        try:
            manager = InstanceManager(env_setting)
            manager.load_model(metadata_path=metadata_path, input_shapes=input_shapes)
            manager.load_visualizer(visualizers)

            manager.open_tensorboard()

            manager.train_model(dataset, epoch_time, check_point_interval_per_iter, is_restore=True)
        except Exception as e:
            print(e)
        finally:
            manager.close_tensorboard()
            del manager
Esempio n. 19
0
 def build_test_model(model_list=None, env_setting=None):
     for model in model_list:
         manager = InstanceManager(env_setting)
         manager.build_instance(model)
         del manager
Esempio n. 20
0
# usage
from DatasetLoader import DatasetLoader
from InstanceManger import InstanceManager

# load dataset by calling DatasetLoader
# input_shapes is for tensorflow.PlaceHolder's shape
# need to build instanc e
dataset, input_shapes = DatasetLoader().load_dataset("dataset_name")

# apply to train model
instanceManager = InstanceManager()
instanceManager.train_instance(epoch_time,
                               dataset=dataset,
                               check_point_interval=check_point_interval)

# 1. add dataset folder path in **env_setting.py**
EXAMPLE_DATASET_PATH = os.path.join(DATA_PATH, 'example_dataset')

# 2. add dataset_batch_keys in **dict_keys.dataset_batch_keys.py**
INPUT_SHAPE_KEY_DATA_X = "INPUT_SHAPE_KEY_DATA_X"
INPUT_SHAPE_KEY_DATA_X = "INPUT_SHAPE_KEY_DATA_X"
INPUT_SHAPE_KEY_LABEL = "INPUT_SHAPE_KEY_LABEL"
INPUT_SHAPE_KEY_LABEL_SIZE = "INPUT_SHAPE_KEY_LABEL_SIZE"

# 3. add input_shapes_keys in **dict_keys.dataset_batch_keys.py**
BATCH_KEY_EXAMPLE_TRAIN_X = "BATCH_KEY_EXAMPLE_TRAIN_X"
BATCH_KEY_EXAMPLE_TEST_X = "BATCH_KEY_EXAMPLE_TEST_X"
BATCH_KEY_EXAMPLE_TRAIN_LABEL = "BATCH_KEY_EXAMPLE_TRAIN_LABEL"
BATCH_KEY_EXAMPLE_TEST_LABEL = "BATCH_KEY_EXAMPLE_TEST_LABEL"

# 4. implement dataset class in **data_handler.dataset_name.py**
Esempio n. 21
0
    def gen_model_and_train(model=None, input_shapes=None, dataset=None, visualizers=None, env_path=None, epoch_time=50,
                            check_point_interval_per_iter=5000):
        manager = InstanceManager(env_path)
        manager.gen_instance(model, input_shapes)
        manager.load_visualizer(visualizers)

        manager.open_tensorboard()
        manager.train_model(dataset, epoch_time, check_point_interval_per_iter)
        manager.close_tensorboard()
        del manager