def test_dfumap_bad_matrix_init(nn_data): u = DataFrameUMAP( metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], init=np.array([[0, 0, 0], [0, 0, 0]]), ) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_negative_n_epochs(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], n_epochs=-2) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_negative_sample_rate(nn_data): u = DataFrameUMAP( metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], negative_sample_rate=-1 ) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_bad_numeric_init(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], init=42) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_non_existing_metric_name(nn_data): u = DataFrameUMAP(metrics=[("e", "foobar", [0, 1, 2, 3, 4])]) assert_raises(AssertionError, u.fit, nn_data)
def test_dfumap_negative_repulsion(nn_data): u = DataFrameUMAP( metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], repulsion_strength=-0.5 ) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_non_integer_n_components(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], n_components=1.5) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_too_small_n_neighbours(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], n_neighbors=0.5) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_too_large_min_dist(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], min_dist=2.0) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_too_large_op(nn_data): u = DataFrameUMAP( metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], set_op_mix_ratio=1.5 ) assert_raises(ValueError, u.fit, nn_data)
def test_dfumap_metrics_bad_column_positions_as_floats(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", [0.1, 0.2, 0.75])]) assert_raises(AssertionError, u.fit, nn_data)
def test_dfumap_metrics_bad_df_column(nn_data): u = DataFrameUMAP(metrics=[("e", "euclidean", "bad_columns")]) assert_raises(AssertionError, u.fit, nn_data)
def test_dfumap_negative_target_n_neighbours(nn_data): u = DataFrameUMAP( metrics=[("e", "euclidean", [0, 1, 2, 3, 4])], target_n_neighbors=1 ) assert_raises(ValueError, u.fit, nn_data)