def Initialize(self):

        self.computing_model_part = self.GetComputingModelPart()

        MoveMeshFlag = False

        # TODO: TURBULENCE MODELS ARE NOT ADDED YET
        #~ # Turbulence model
        #~ if self.use_spalart_allmaras:
        #~ self.activate_spalart_allmaras()

        # creating the solution strategy
        self.conv_criteria = KratosCFD.VelPrCriteria(
            self.settings["relative_velocity_tolerance"].GetDouble(),
            self.settings["absolute_velocity_tolerance"].GetDouble(),
            self.settings["relative_pressure_tolerance"].GetDouble(),
            self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        self.time_scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
            self.velocity_relaxation_factor, self.pressure_relaxation_factor,
            self.computing_model_part.ProcessInfo[
                KratosMultiphysics.DOMAIN_SIZE])

        # TODO: TURBULENCE MODELS ARE NOT ADDED YET
        #~ if self.turbulence_model is None:
        #~ if self.periodic == True:
        #~ self.time_scheme = ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent\
        #~ (self.alpha, self.move_mesh_strategy, self.domain_size, PATCH_INDEX)
        #~ else:
        #~ self.time_scheme = ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent\
        #~ (self.alpha, self.move_mesh_strategy, self.domain_size)
        #~ else:
        #~ self.time_scheme = ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent\
        #~ (self.alpha, self.move_mesh_strategy, self.domain_size, self.turbulence_model)

        builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(
            self.linear_solver)

        self.solver = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(
            self.main_model_part, self.time_scheme, self.linear_solver,
            self.conv_criteria, builder_and_solver,
            self.settings["maximum_iterations"].GetInt(),
            self.settings["compute_reactions"].GetBool(),
            self.settings["reform_dofs_at_each_step"].GetBool(),
            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        if self.settings["stabilization"].Has("dynamic_tau"):
            self.main_model_part.ProcessInfo.SetValue(
                KratosMultiphysics.DYNAMIC_TAU,
                self.settings["stabilization"]["dynamic_tau"].GetDouble())
        if self.settings["stabilization"].Has("oss_switch"):
            self.main_model_part.ProcessInfo.SetValue(
                KratosMultiphysics.OSS_SWITCH,
                self.settings["stabilization"]["oss_switch"].GetInt())

        print("Monolithic solver initialization finished.")
    def _CreateScheme(self):
        domain_size = self.GetComputingModelPart().ProcessInfo[
            KratosMultiphysics.DOMAIN_SIZE]
        # Cases in which the element manages the time integration
        if self.element_integrates_in_time:
            # "Fake" scheme for those cases in where the element manages the time integration
            # It is required to perform the nodal update once the current time step is solved
            scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticSchemeSlip(
                domain_size, domain_size + 1)
            # In case the BDF2 scheme is used inside the element, the BDF time discretization utility is required to update the BDF coefficients
            if (self.settings["time_scheme"].GetString() == "bdf2"):
                time_order = 2
                self.time_discretization = KratosMultiphysics.TimeDiscretization.BDF(
                    time_order)
            else:
                err_msg = "Requested elemental time scheme \"" + self.settings[
                    "time_scheme"].GetString() + "\" is not available.\n"
                err_msg += "Available options are: \"bdf2\""
                raise Exception(err_msg)
        # Cases in which a time scheme manages the time integration
        else:
            # Bossak time integration scheme
            if self.settings["time_scheme"].GetString() == "bossak":
                if self.settings["consider_periodic_conditions"].GetBool(
                ) == True:
                    scheme = KratosSDEM.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulentDEMCoupled(
                        self.settings["alpha"].GetDouble(), domain_size,
                        KratosSDEM.PATCH_INDEX)
                else:
                    scheme = KratosSDEM.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulentDEMCoupled(
                        self.settings["alpha"].GetDouble(),
                        self.settings["move_mesh_strategy"].GetInt(),
                        domain_size)
            # BDF2 time integration scheme
            elif self.settings["time_scheme"].GetString() == "bdf2":
                scheme = KratosSDEM.BDF2TurbulentSchemeDEMCoupled()
            # Time scheme for steady state fluid solver
            elif self.settings["time_scheme"].GetString() == "steady":
                scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                    self.settings["velocity_relaxation"].GetDouble(),
                    self.settings["pressure_relaxation"].GetDouble(),
                    domain_size)
            else:
                err_msg = "Requested time scheme " + self.settings[
                    "time_scheme"].GetString() + " is not available.\n"
                err_msg += "Available options are: \"bossak\", \"bdf2\" and \"steady\""
                raise Exception(err_msg)

        return scheme
    def Initialize(self):

        self.computing_model_part = self.GetComputingModelPart()

        # If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility()

        # Creating the solution strategy
        self.conv_criteria = KratosCFD.VelPrCriteria(self.settings["relative_velocity_tolerance"].GetDouble(),
                                                     self.settings["absolute_velocity_tolerance"].GetDouble(),
                                                     self.settings["relative_pressure_tolerance"].GetDouble(),
                                                     self.settings["absolute_pressure_tolerance"].GetDouble())

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        # Creating the time integration scheme
        if (self.element_integrates_in_time):
            # "Fake" scheme for those cases in where the element manages the time integration
            # It is required to perform the nodal update once the current time step is solved
            self.time_scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticSchemeSlip(
                self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],
                self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE]+1)
            # In case the BDF2 scheme is used inside the element, the BDF process is required to update the BDF coefficients
            if (self.settings["time_scheme"].GetString() == "bdf2"):
                time_order = 2
                self.bdf_process = KratosMultiphysics.ComputeBDFCoefficientsProcess(self.computing_model_part, time_order)
            else:
                err_msg = "Requested elemental time scheme " + self.settings["time_scheme"].GetString() + " is not available.\n"
                err_msg += "Available options are: \"bdf2\""
                raise Exception(err_msg)
        else:
            if (self.settings["turbulence_model"].GetString() == "None"):
                # Bossak time integration scheme
                if self.settings["time_scheme"].GetString() == "bossak":
                    if self.settings["consider_periodic_conditions"].GetBool() == True:
                        self.time_scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                            self.settings["alpha"].GetDouble(),
                            self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE],
                            KratosCFD.PATCH_INDEX)
                    else:
                        self.time_scheme = KratosCFD.ResidualBasedPredictorCorrectorVelocityBossakSchemeTurbulent(
                            self.settings["alpha"].GetDouble(),
                            self.settings["move_mesh_strategy"].GetInt(),
                            self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])
                # BDF2 time integration scheme
                elif self.settings["time_scheme"].GetString() == "bdf2":
                    self.time_scheme = KratosCFD.GearScheme()
                # Time scheme for steady state fluid solver
                elif self.settings["time_scheme"].GetString() == "steady":
                    self.time_scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                            self.settings["velocity_relaxation"].GetDouble(),
                            self.settings["pressure_relaxation"].GetDouble(),
                            self.computing_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE])
                else:
                    err_msg = "Requested time scheme " + self.settings["time_scheme"].GetString() + " is not available.\n"
                    err_msg += "Available options are: \"bossak\", \"bdf2\" and \"steady\""
                    raise Exception(err_msg)
            else:
                raise Exception("Turbulence models are not added yet.")

        if self.settings["consider_periodic_conditions"].GetBool() == True:
            builder_and_solver = KratosCFD.ResidualBasedBlockBuilderAndSolverPeriodic(self.linear_solver,
                                                                                KratosCFD.PATCH_INDEX)
        else:
            builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(self.linear_solver)


        self.solver = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(self.computing_model_part,
                                                                            self.time_scheme,
                                                                            self.linear_solver,
                                                                            self.conv_criteria,
                                                                            builder_and_solver,
                                                                            self.settings["maximum_iterations"].GetInt(),
                                                                            self.settings["compute_reactions"].GetBool(),
                                                                            self.settings["reform_dofs_at_each_step"].GetBool(),
                                                                            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        self.formulation.SetProcessInfo(self.computing_model_part)

        (self.solver).Initialize()

        KratosMultiphysics.Logger.PrintInfo("NavierStokesSolverMonolithic", "Solver initialization finished.")
    def Initialize(self):

        self.computing_model_part = self.GetComputingModelPart()

        # If needed, create the estimate time step utility
        if (self.settings["time_stepping"]["automatic_time_step"].GetBool()):
            self.EstimateDeltaTimeUtility = self._GetAutomaticTimeSteppingUtility(
            )

        # Creating the solution strategy
        self.convergence_criterion = KratosMultiphysics.MixedGenericCriteria([
            (KratosMultiphysics.VELOCITY,
             self.settings["relative_velocity_tolerance"].GetDouble(),
             self.settings["absolute_velocity_tolerance"].GetDouble()),
            (KratosMultiphysics.PRESSURE,
             self.settings["relative_pressure_tolerance"].GetDouble(),
             self.settings["absolute_pressure_tolerance"].GetDouble())
        ])

        (self.conv_criteria).SetEchoLevel(self.settings["echo_level"].GetInt())

        if (self.settings["turbulence_model"].GetString() == "None"):
            if self.settings["time_scheme"].GetString() == "bossak":
                if self.settings["consider_periodic_conditions"].GetBool(
                ) == True:
                    self.time_scheme = KratosPFEM2.ResidualBasedPredictorCorrectorVelocityBossakAleScheme(
                        self.settings["alpha"].GetDouble(),
                        self.computing_model_part.ProcessInfo[
                            KratosMultiphysics.DOMAIN_SIZE],
                        KratosCFD.PATCH_INDEX)
                else:
                    self.time_scheme = KratosPFEM2.ResidualBasedPredictorCorrectorVelocityBossakAleScheme(
                        self.settings["alpha"].GetDouble(),
                        self.settings["move_mesh_strategy"].GetInt(),
                        self.computing_model_part.ProcessInfo[
                            KratosMultiphysics.DOMAIN_SIZE])
            elif self.settings["time_scheme"].GetString() == "bdf2":
                self.time_scheme = KratosCFD.BDF2TurbulentScheme()
            elif self.settings["time_scheme"].GetString() == "steady":
                self.time_scheme = KratosCFD.ResidualBasedSimpleSteadyScheme(
                    self.settings["velocity_relaxation"].GetDouble(),
                    self.settings["pressure_relaxation"].GetDouble(),
                    self.computing_model_part.ProcessInfo[
                        KratosMultiphysics.DOMAIN_SIZE])
        else:
            raise Exception("Turbulence models are not added yet.")

        if self.settings["consider_periodic_conditions"].GetBool() == True:
            builder_and_solver = KratosCFD.ResidualBasedBlockBuilderAndSolverPeriodic(
                self.linear_solver, KratosCFD.PATCH_INDEX)
        else:
            builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(
                self.linear_solver)

        self.solver = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(
            self.computing_model_part, self.time_scheme, self.linear_solver,
            self.conv_criteria, builder_and_solver,
            self.settings["maximum_iterations"].GetInt(),
            self.settings["compute_reactions"].GetBool(),
            self.settings["reform_dofs_at_each_step"].GetBool(),
            self.settings["move_mesh_flag"].GetBool())

        (self.solver).SetEchoLevel(self.settings["echo_level"].GetInt())

        self.formulation.SetProcessInfo(self.computing_model_part)

        (self.solver).Initialize()

        KratosMultiphysics.Logger.PrintInfo(
            "PFEM2NavierStokesMonolithicSolver",
            "Solver initialization finished.")