Esempio n. 1
0
  def generateParameters(cls,
                         input_dict: Dict[str, Tuple[str, Dict[str, TypeShape], str]],
                         expected_outputs: Set[TypeShape],
                         variable_pool: dict = None) -> \
      Tuple[List[Dict[str, object]], List[float]]:
    default_input_label, default_input_ntss, _ = input_dict.get(IOLabel.MERGE_IN)
    other_input_label, other_input_ntss, _ = input_dict.get(IOLabel.MERGE_OTHER)
    default_input_nts = default_input_ntss[default_input_label]
    other_input_nts = other_input_ntss[other_input_label]

    if default_input_nts.dtype != other_input_nts.dtype:
      return [], []

    out_shape = Shape()

    for _dim in default_input_nts.shape.dim:
      if _dim.name == DimNames.CHANNEL or \
          _dim.name == DimNames.UNITS:
        out_shape.dim.append(Shape.Dim(_dim.name, _dim.size + other_input_nts.shape[_dim.name]))
      elif _dim.size != other_input_nts.shape[_dim.name]:
        return [], []
      else:
        out_shape.dim.append(Shape.Dim(_dim.name, _dim.size))

    input_mapping = dict([(l_in, (l_out, df_id_name)) for l_in, (l_out, _, df_id_name) in input_dict.items()])
    return [{cls.arg_INPUT_MAPPING: input_mapping,
             cls.arg_ATTRIBUTES: {cls.arg_OUT_NAMED_TYPE_SHAPES:
                                    {IOLabel.MERGE_OUT: TypeShape(default_input_nts.dtype, out_shape)}},
             }], [1.0]
Esempio n. 2
0
  def __init__(self, **kwargs):
    super(SupervisedData, self).__init__(**kwargs)
    self.batch = kwargs.get(self.arg_BATCH)
    self._namedOutputShapes = kwargs.get(self.arg_SHAPES)
    for _shape in self._namedOutputShapes.values():
      _shape.shape.dim.insert(0, Shape.Dim(Shape.Dim.Names.BATCH, self.batch))
    self.train_X = kwargs.get(self.arg_TRAINX)
    self.train_Y = kwargs.get(self.arg_TRAINY)
    self.test_X = kwargs.get(self.arg_TESTX)
    self.test_Y = kwargs.get(self.arg_TESTY)
    self.valid_X = kwargs.get(self.arg_VALIDX)
    self.valid_Y = kwargs.get(self.arg_VALIDY)
    if self.train_X is None and self.test_X is None and self.valid_X is None:
      raise Exception('All input data is None!')
    if self.train_X is not None:
      dimension_sizes = next(iter(self.train_X)).shape
    elif self.test_X is not None:
      dimension_sizes = next(iter(self.test_X)).shape
    elif self.valid_X is not None:
      dimension_sizes = next(iter(self.valid_X)).shape

    if (self.train_X is not None and next(iter(self.train_X)).shape != dimension_sizes) or \
        (self.test_X is not None and next(iter(self.test_X)).shape != dimension_sizes) or \
        (self.valid_X is not None and next(iter(self.valid_X)).shape != dimension_sizes):
      raise Exception('Train test and valid data must have the same size!')
    self.idx = 0
    self.len = 1
    self.data_X = self.test_X
    self.data_Y = self.test_Y
    self.state = ''
Esempio n. 3
0
 def max_transform(cls, nts):
     if nts.dtype not in cls.allowedTypes:
         return None
     s = Shape()
     result = TypeShape(nts.dtype, s)
     for _dim in nts.shape.dim:
         if _dim.name == DimNames.BATCH or \
             _dim.name == DimNames.CHANNEL:
             s.dim.append(Shape.Dim(_dim.name, _dim.size))
         elif _dim.name == DimNames.WIDTH or \
             _dim.name == DimNames.HEIGHT:
             s.dim.append(
                 Shape.Dim(_dim.name,
                           int(math.floor(_dim.size * cls.__max_f_hw))))
         else:
             return None
     return result
Esempio n. 4
0
 def max_transform(cls, nts):
   if nts.dtype not in cls.allowedTypes:
     return None
   s = Shape()
   image, vektor = False, False
   result = TypeShape(nts.dtype, s)
   for _dim in nts.shape.dim:
     if (_dim.name == DimNames.BATCH
         or _dim.name == DimNames.WIDTH
         or _dim.name == DimNames.HEIGHT
     ):
       s.dim.append(Shape.Dim(_dim.name, _dim.size))
     elif _dim.name == DimNames.UNITS and not image:
       s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * (1 + cls.__max_f)))))  # pessimistic estimation
       vektor = True
     elif _dim.name == DimNames.CHANNEL and not vektor:
       s.dim.append(Shape.Dim(_dim.name, int(math.ceil(_dim.size * (1 + cls.__max_f)))))  # pessimistic estimation
       image = True
     else:
       return None
   return result
Esempio n. 5
0
 def min_transform(cls, nts):
   if nts.dtype not in cls.allowedTypes:
     return None
   s = Shape()
   result = TypeShape(nts.dtype, s)
   units = 1
   num_units = 0
   for _dim in nts.shape.dim:
     if _dim.name == DimNames.BATCH:
       s.dim.append(Shape.Dim(_dim.name, _dim.size))
     elif (_dim.name == DimNames.WIDTH or
           _dim.name == DimNames.HEIGHT or
           _dim.name == DimNames.CHANNEL):
       units *= _dim.size
     elif _dim.name == DimNames.UNITS:
       units *= _dim.size
       num_units += 1
     else:
       return None
   if num_units == 1:
     return None
   s.dim.append(Shape.Dim(DimNames.UNITS, units))
   return result