if args.use_recalc: import GasFlowHLCalculator.qbs_fill as qf try: fill_dict.update(qf.get_fill_dict(filln,h5_storage=H5_storage(recalc_h5_folder),use_dP=True)) except ValueError: 'Skipped due to ValueError' if plot_model: try: fill_dict.update(tm.timber_variables_from_h5(data_folder_fill+'/heatloads_fill_h5s/imp_and_SR_fill_%i.h5' % filln)) except IOError: print "model datafile not found" bct_b1 = BCT.BCT(fill_dict, beam=1) bct_b2 = BCT.BCT(fill_dict, beam=2) energy = Energy.energy(fill_dict, beam=1, t_start_fill=t_startfill, t_end_fill=t_endfill) ax1.plot(tc(bct_b1.t_stamps), bct_b1.values*1e-14, lw=2, c='b', label = 'Intensity B1' if i_fill==0 else "") ax1.plot(tc(bct_b2.t_stamps), bct_b2.values*1e-14, lw=2, c='r', label = 'Intensity B2' if i_fill==0 else "") ax11.plot(tc(energy.t_stamps), energy.energy/1e3, c='black', linestyle = '--',lw=2,label='Energy' if i_fill==0 else "") #was alpha=.5 heatloads = SetOfHomogeneousNumericVariables(variable_list=hl_varlist, timber_variables=fill_dict) # remove offset if zero_at is not None: for device in hl_varlist: heatloads.timber_variables[device].values = heatloads.timber_variables[device].values - dict_offsets[device] # normalize to the length
import LHCMeasurementTools.LHC_Energy as Energy import LHCMeasurementTools.LHC_BCT as BCT import LHCMeasurementTools.LHC_Fills as Fills from LHCMeasurementTools.LHC_Fill_LDB_Query import save_variables_and_pickle import pickle import os csv_folder = 'fill_basic_data_csvs' filepath = csv_folder+'/basic_data_fill' if not os.path.isdir(csv_folder): os.mkdir(csv_folder) fills_pkl_name = 'fills_and_bmodes.pkl' with open(fills_pkl_name, 'rb') as fid: dict_fill_bmodes = pickle.load(fid) saved_pkl = csv_folder+'/saved_fills.pkl' varlist = [] varlist += Energy.variable_list() varlist += BCT.variable_list() save_variables_and_pickle(varlist=varlist, file_path_prefix=filepath, save_pkl=saved_pkl, fills_dict=dict_fill_bmodes)
import os h5_folder = 'fill_basic_data_h5s' filepath = h5_folder + '/basic_data_fill' if not os.path.isdir(h5_folder): os.mkdir(h5_folder) fills_json_name = 'fills_and_bmodes.json' dict_fill_bmodes = load_fill_dict_from_json(fills_json_name) saved_json = h5_folder + '/saved_fills.json' varlist = [] varlist += Energy.variable_list() varlist += BCT.variable_list() # Switch between cals and nxcals import pytimber db = pytimber.LoggingDB(source='nxcals') #db = pytimber.LoggingDB(source='ldb') #from LHCMeasurementTools.TimberManager import NXCalsFastQuery #db = NXCalsFastQuery(system='CMW') save_variables_and_json(varlist=varlist, file_path_prefix=filepath, save_json=saved_json, fills_dict=dict_fill_bmodes, db=db, n_vars_per_extraction=1000)
t_start_fill, t_end_fill, scaleAlgorithm='AVG', scaleInterval='SECOND', scaleSize='30')) print('Done') ################## ## Data manip ## ################## bsrt_calib_dict = BSRT_calib.emittance_dictionary(filln=filln) energy = Energy.energy(fill_dict, beam=beam) bct = BCT.BCT(fill_dict, beam=beam) bsrt = BSRT.BSRT(fill_dict, beam=beam, calib_dict=bsrt_calib_dict, average_repeated_meas=average_repeated_meas) bsrt.calculate_emittances(energy) dict_bunches, t_bbb, emit_h_bbb, emit_v_bbb, bunch_n_un = bsrt.get_bbb_emit_evolution( ) #resample with uniform time step resampled_emit_h_bbb = [] resampled_emit_v_bbb = [] t_resampled = np.arange(t_start_fill, t_end_fill, t_step_resample_s)
print("Fill incomplete --> no h5 convesion") continue if os.path.isfile(h5filename) and dict_fill_bmodes[filln]['flag_complete'] is True: print("Already complete and in h5") continue try: dict_fill_data = {} dict_fill_data.update(tm.parse_timber_file('fill_basic_data_csvs/basic_data_fill_%d.csv'%filln, verbose=False)) dict_fill_data.update(tm.parse_timber_file('fill_heatload_data_csvs/heatloads_fill_%d.csv'%filln, verbose=False)) varlist = [] varlist += LHC_BCT.variable_list() varlist += LHC_Energy.variable_list() for kk in list(LHC_Heatloads.variable_lists_heatloads.keys()): varlist+=LHC_Heatloads.variable_lists_heatloads[kk] dict_to_h5 = {} for varname in varlist: #~ print varname dict_to_h5[varname+'!t_stamps'] = np.float_(dict_fill_data[varname].t_stamps) dict_to_h5[varname+'!values'] = dict_fill_data[varname].float_values() with h5py.File(h5filename, 'w') as fid: for kk in list(dict_to_h5.keys()):