Esempio n. 1
0
def standard_sample(make_hypothesis, make_data, skip=9, show=True, N=100, save_top='top.pkl', alsoprint='None', **kwargs):
    """
        Just a simplified interface for sampling, allowing printing (showing), returning the top, and saving.
        This is used by many examples, and is meant to easily allow running with a variety of parameters.
        NOTE: This skip is a skip *only* on printing
        **kwargs get passed to sampler
    """
    if LOTlib.SIG_INTERRUPTED:
        return TopN()  # So we don't waste time!

    h0 = make_hypothesis()
    data = make_data()

    best_hypotheses = TopN(N=N)

    f = eval(alsoprint)

    for i, h in enumerate(break_ctrlc(MHSampler(h0, data, **kwargs))):
        best_hypotheses.add(h)

        if show and i%(skip+1) == 0:
            print i, \
                h.posterior_score, \
                h.prior, \
                h.likelihood, \
                f(h) if f is not None else '', \
                qq(cleanFunctionNodeString(h))

    if save_top is not None:
        print "# Saving top hypotheses"
        with open(save_top, 'w') as f:
            pickle.dump(best_hypotheses, f)

    return best_hypotheses
Esempio n. 2
0
def run():
    from LOTlib import lot_iter
    from LOTlib.Inference.Proposals.RegenerationProposal import RegenerationProposal
    #mp = MixtureProposal([RegenerationProposal(grammar), InsertDeleteProposal(grammar)] )
    mp = RegenerationProposal(grammar)

    from LOTlib.Hypotheses.LOTHypothesis import LOTHypothesis
    h0 = LOTHypothesis(grammar, args=['x', 'y'], ALPHA=0.999, proposal_function=mp) # alpha here trades off with the amount of data. Currently assuming no noise, but that's not necessary

    from LOTlib.Inference.MetropolisHastings import MHSampler
    for h in lot_iter(MHSampler(h0, data, skip=100)):
        print h.posterior_score, h.likelihood, h.prior, cleanFunctionNodeString(h)
Esempio n. 3
0
def standard_sample(make_hypothesis, make_data, show_skip=9, show=True, N=100, save_top='top.pkl', alsoprint='None', **kwargs):
    """
        Just a simplified interface for sampling, allowing printing (showing), returning the top, and saving.
        This is used by many examples, and is meant to easily allow running with a variety of parameters.
        NOTE: This skip is a skip *only* on printing
        **kwargs get passed to sampler
    """
    if LOTlib.SIG_INTERRUPTED:
        return TopN()  # So we don't waste time!

    h0 = make_hypothesis()
    data = make_data()


    best_hypotheses = TopN(N=N)

    f = eval(alsoprint)

    sampler = MHSampler(h0, data, **kwargs)

#    # TODO change acceptance temperature over times
#    sampler.acceptance_temperature = 0.5

    for i, h in enumerate(break_ctrlc(sampler)):

#        if i % 10000 == 0 and i != 0:
#            sampler.acceptance_temperature = min(1.0, sampler.acceptance_temperature+0.1)
#            print '='*50
#            print 'change acc temperature to', sampler.acceptance_temperature 

        best_hypotheses.add(h)

        if show and i%(show_skip+1) == 0:

            print i, \
                h.posterior_score, \
                h.prior, \
                h.likelihood, \
                f(h) if f is not None else '', \
                qq(cleanFunctionNodeString(h))

    if save_top is not None:
        print "# Saving top hypotheses"
        with open(save_top, 'w') as f:
            pickle.dump(best_hypotheses, f)

    return best_hypotheses
Esempio n. 4
0
                 FunctionData(input=[ "n2", "n1" ], output=False),
                 FunctionData(input=[ "n2", "n2" ], output=False),
                 FunctionData(input=[ "n2", "p1" ], output=True),
                 FunctionData(input=[ "n2", "p2" ], output=True)]

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Standard exports
from LOTlib.Hypotheses.LOTHypothesis import LOTHypothesis

def make_ho(value=None):
    return LOTHypothesis(grammar, value=value, args=['x', 'y'], ALPHA=0.999) # alpha here trades off with the amount of data. Currently assuming no noise, but that's not necessary

if __name__ == "__main__":
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Run mcmc
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    from LOTlib.Proposals.RegenerationProposal import *
    #mp = MixtureProposal([RegenerationProposal(grammar), InsertDeleteProposal(grammar)] )
    mp = RegenerationProposal(grammar)

    h0 = LOTHypothesis(grammar, args=['x', 'y'], ALPHA=0.999, proposal_function=mp) # alpha here trades off with the amount of data. Currently assuming no noise, but that's not necessary


    from LOTlib.Inference.MetropolisHastings import mh_sample
    for h in mh_sample(h0, data, 4000000, skip=100):
        print h.posterior_score, h.likelihood, h.prior,  cleanFunctionNodeString(h)
        print map( lambda d: h(*d.input), data)
        print "\n"
Esempio n. 5
0
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Standard exports
from LOTlib.Hypotheses.LOTHypothesis import LOTHypothesis


def make_ho(value=None):
    return LOTHypothesis(
        grammar, value=value, args=['x', 'y'], ALPHA=0.999
    )  # alpha here trades off with the amount of data. Currently assuming no noise, but that's not necessary


if __name__ == "__main__":
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Run mcmc
    # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    from LOTlib.Proposals.RegenerationProposal import *
    #mp = MixtureProposal([RegenerationProposal(grammar), InsertDeleteProposal(grammar)] )
    mp = RegenerationProposal(grammar)

    h0 = LOTHypothesis(
        grammar, args=['x', 'y'], ALPHA=0.999, proposal_function=mp
    )  # alpha here trades off with the amount of data. Currently assuming no noise, but that's not necessary

    from LOTlib.Inference.MetropolisHastings import mh_sample
    for h in mh_sample(h0, data, 4000000, skip=100):
        print h.posterior_score, h.likelihood, h.prior, cleanFunctionNodeString(
            h)
        print map(lambda d: h(*d.input), data)
        print "\n"
Esempio n. 6
0
        display_option_summary(options)

        eval_data = None
        if options.EVAL_DATA > 0:
            eval_data = make_data(options.EVAL_DATA)


    # choose the appropriate map function
    args = list(itertools.product([make_hypothesis],[make_data], data_amounts * options.CHAINS) )

    # set the output codec -- needed to display lambda to stdout
    sys.stdout = codecs.getwriter('utf8')(sys.stdout)

    seen = set()
    for fs in MPI_unorderedmap(run, numpy.random.permutation(args)):
        assert is_master_process()

        for h in fs:

            if h not in seen:
                seen.add(h)

                if eval_data is not None:
                    h.compute_posterior(eval_data) # evaluate on the big data
                    print h.prior, h.likelihood / options.EVAL_DATA, qq(cleanFunctionNodeString(h))

    import pickle
    with open(options.OUT_PATH, 'w') as f:
        pickle.dump(seen, f)

Esempio n. 7
0
        if options.EVAL_DATA > 0:
            eval_data = make_data(options.EVAL_DATA)


    # choose the appropriate map function
    args = list(itertools.product([make_hypothesis],[make_data], data_amounts * options.CHAINS) )

    # set the output codec -- needed to display lambda to stdout
    sys.stdout = codecs.getwriter('utf8')(sys.stdout)

    seen = set()
    for fs in MPI_unorderedmap(run, numpy.random.permutation(args)):
        assert is_master_process()

        for h in fs:

            if h not in seen:
                seen.add(h)

                if eval_data is not None:
                    h.compute_posterior(eval_data) # evaluate on the big data
                    print h.posterior_score, h.prior, h.likelihood / options.EVAL_DATA, \
                            alsoprint(h) if alsoprint is not None else '',\
                            qq(cleanFunctionNodeString(h))


    import pickle
    with open(options.OUT_PATH, 'w') as f:
        pickle.dump(seen, f)

Esempio n. 8
0
        eval_data = None
        if options.EVAL_DATA > 0:
            eval_data = make_data(options.EVAL_DATA)

    # choose the appropriate map function
    args = list(
        itertools.product([make_hypothesis], [make_data],
                          data_amounts * options.CHAINS))

    # set the output codec -- needed to display lambda to stdout
    sys.stdout = codecs.getwriter('utf8')(sys.stdout)

    seen = set()
    for fs in MPI_unorderedmap(run, numpy.random.permutation(args)):
        assert is_master_process()

        for h in fs:

            if h not in seen:
                seen.add(h)

                if eval_data is not None:
                    h.compute_posterior(eval_data)  # evaluate on the big data
                    print h.posterior_score, h.prior, h.likelihood / options.EVAL_DATA, \
                            alsoprint(h) if alsoprint is not None else '',\
                            qq(cleanFunctionNodeString(h))

    import pickle
    with open(options.OUT_PATH, 'w') as f:
        pickle.dump(seen, f)