def modelopt(lstmsize, lstmdropout, lstmoptim, nestimators):
    lstmsize = lstmsize[0] * 10
    lstmdropout = lstmdropout[0]
    lstmoptim = lstmoptim[0]
    lstmnepochs = 50
    lstmbatchsize = 64

    nestimators = nestimators[0] * 100
    nfolds = 5

    print lstmsize, lstmdropout, lstmoptim, nestimators

    # Load the dataset
    static_train = np.load("/storage/hpc_anna/GMiC/Data/ECoGmixed/fourier/train_data.npy")
    dynamic_train = np.load("/storage/hpc_anna/GMiC/Data/ECoGmixed/preprocessed/train_data.npy")
    static_val = np.load("/storage/hpc_anna/GMiC/Data/ECoGmixed/fourier/test_data.npy")
    dynamic_val = np.load("/storage/hpc_anna/GMiC/Data/ECoGmixed/preprocessed/test_data.npy")
    labels_train = np.load("/storage/hpc_anna/GMiC/Data/ECoGmixed/preprocessed/train_labels.npy")
    labels_val = np.load("/storage/hpc_anna/GMiC/Data/ECoGmixed/preprocessed/test_labels.npy")

    # Merge train and test
    static_all = np.concatenate((static_train, static_val), axis=0)
    dynamic_all = np.concatenate((dynamic_train, dynamic_val), axis=0)
    labels_all = np.concatenate((labels_train, labels_val), axis=0)
    nsamples = static_all.shape[0]

    # prepare where to store the ratios
    ratios_all_lstm = np.empty(len(labels_all))

    # split indices into folds
    enrich_idx_list = np.array_split(range(nsamples), nfolds)

    # run CV
    for fid, enrich_idx in enumerate(enrich_idx_list):
        train_idx = list(set(range(nsamples)) - set(enrich_idx))

        # extract predictions using LSTM on dynamic
        lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs, lstmbatchsize)
        model_pos, model_neg = lstmcl.train(dynamic_all[train_idx], labels_all[train_idx])
        ratios_all_lstm[enrich_idx] = lstmcl.pos_neg_ratios(model_pos, model_neg, dynamic_all[enrich_idx])

    # dataset for hybrid learning
    enriched_by_lstm = np.concatenate((static_all, np.matrix(ratios_all_lstm).T), axis=1)

    # (2.) k-fold cross validation to obtain accuracy
    val_idx_list = np.array_split(range(nsamples), nfolds)
    scores = []
    for fid, val_idx in enumerate(val_idx_list):
        train_idx = list(set(range(nsamples)) - set(val_idx))

        # Hybrid on features enriched by HMM (3)
        rf = RandomForestClassifier(n_estimators=nestimators)
        rf.fit(enriched_by_lstm[train_idx], labels_all[train_idx])
        scores.append(rf.score(enriched_by_lstm[val_idx], labels_all[val_idx]))

    print "Result: %.4f" % np.mean(scores)
    return -np.mean(scores)
    train_idx = list(set(range(nsamples)) - set(predict_idx))
    
    # extract predictions using RF on static
    print "    Extracting predictions on static data with RF..."
    rf = RandomForestClassifier(n_estimators=nestimators)
    rf.fit(static_all[train_idx], labels_all[train_idx])
    predictions_all_rf[predict_idx] = rf.predict_log_proba(static_all[predict_idx])
    predictions_all_rf[predictions_all_rf == -inf] = np.min(predictions_all_rf[predictions_all_rf != -inf])

    # extract predictions using LSTM on dynamic
    print "    Extracting predictions on dynamic data with LSTM..."
    lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs, lstmbatchsize)
    model_pos, model_neg = lstmcl.train(dynamic_all[train_idx], labels_all[train_idx])
    mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg, dynamic_all[predict_idx]) 
    predictions_all_lstm[predict_idx] = np.vstack((mse_pos, mse_neg)).T
    ratios_all_lstm[predict_idx] = lstmcl.pos_neg_ratios(model_pos, model_neg, dynamic_all[predict_idx])


#
# Prepare combined datasets for the future experiments
#

# datasets for ensemble learning
predictions_combined_rf_lstm = np.concatenate((predictions_all_rf, predictions_all_lstm), axis=1)

# datasets for hybrid learning
enriched_by_lstm = np.concatenate((static_all, np.matrix(ratios_all_lstm).T), axis=1)

# dataset to check how generative models perform if provided with static features along with dynamic
static_as_dynamic = np.zeros((static_all.shape[0], static_all.shape[1], dynamic_all.shape[2]))
for i in range(static_all.shape[0]):
        # extract predictions using HMM on dynamic
        hmmcl = HMMClassifier()
        model_pos, model_neg = hmmcl.train(nhmmstates, nhmmiter, hmmcovtype,
                                           dynamic_all[train_idx],
                                           labels_all[train_idx])
        ratios_all_hmm[predict_idx] = hmmcl.pos_neg_ratios(
            model_pos, model_neg, dynamic_all[predict_idx])

        # extract predictions using LSTM on dynamic
        lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs,
                                lstmbatchsize)
        model_pos, model_neg = lstmcl.train(dynamic_all[train_idx],
                                            labels_all[train_idx])
        mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg,
                                              dynamic_all[predict_idx])
        ratios_all_lstm[predict_idx] = lstmcl.pos_neg_ratios(
            model_pos, model_neg, dynamic_all[predict_idx])

    # datasets for hybrid learning
    enriched_by_hmm = np.concatenate((static_all, np.matrix(ratios_all_hmm).T),
                                     axis=1)
    enriched_by_lstm = np.concatenate(
        (static_all, np.matrix(ratios_all_lstm).T), axis=1)

    # k-fold CV for performance estimation
    val_idx_list = np.array_split(range(nsamples), nfolds)
    scores = {
        1: [],
        2: [],
        3: [],
        4: [],
        5: [],
print "Evaluating joint model:"
print "Splitting data in two halves..."
fh_idx = np.random.choice(range(0, dynamic_train.shape[0]),
                          size=np.round(dynamic_train.shape[0] * 0.5, 0),
                          replace=False)
sh_idx = list(set(range(0, dynamic_train.shape[0])) - set(fh_idx))
fh_data = dynamic_train[fh_idx, :, :]
fh_labels = labels_train[fh_idx]
sh_data = dynamic_train[sh_idx, :, :]
sh_labels = labels_train[sh_idx]

print "Training LSTM classifier..."
lstmcl = LSTMClassifier(2000, 0.5, 'adagrad', 20)
model_pos, model_neg = lstmcl.train(fh_data, fh_labels)

print "Extracting ratios based on the LSTM model..."
sh_ratios = lstmcl.pos_neg_ratios(model_pos, model_neg, sh_data)
val_ratios = lstmcl.pos_neg_ratios(model_pos, model_neg, dynamic_val)

print "Merging static features and LSTM-based ratios..."
enriched_sh_data = np.hstack(
    (static_train[sh_idx, :], sh_ratios.reshape(len(sh_ratios), 1)))
enriched_val_data = np.hstack(
    (static_val, val_ratios.reshape(len(val_ratios), 1)))

print "Training RF on the merged dataset..."
rf = RandomForestClassifier(n_estimators=100)
rf.fit(enriched_sh_data, sh_labels)
print "RF+LSTM with enriched features on validation set: %.4f" % rf.score(
    enriched_val_data, labels_val)
    #
    # Generative LSTM
    #
    print "    Extracting ratios and activations from generative LSTM..."

    # train the models
    lstmcl = LSTMClassifier(g_lstmsize, g_lstmdropout, g_lstmoptim,
                            g_lstmnepochs, g_lstmbatch)
    model_pos, model_neg = lstmcl.train(dynamic_all[train_idx],
                                        labels_all[train_idx])

    # extract ratios
    mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg,
                                          dynamic_all[predict_idx])
    ratios_generative[predict_idx] = lstmcl.pos_neg_ratios(
        model_pos, model_neg, dynamic_all[predict_idx])

    # extract activations
    activations_pos = lstmcl.activations(model_pos, dynamic_all[predict_idx])
    activations_neg = lstmcl.activations(model_neg, dynamic_all[predict_idx])
    activations_generative[predict_idx] = np.concatenate(
        (activations_pos[:, -1, :], activations_neg[:, -1, :]), axis=1)

    #
    # Discriminative LSTM
    #
    print "    Extracting ratios and activations from discriminative LSTM..."

    # train the model
    lstmcl = LSTMDiscriminative(d_lstmsize, d_lstmdropout, d_lstmoptim,
                                d_lstmnepochs, d_lstmbatch)
def bpic(lstmsize, lstmdropout, lstmoptim, nestimators):
    lstmsize = lstmsize[0] * 10
    lstmdropout = lstmdropout[0]
    lstmoptim = lstmoptim[0]
    lstmnepochs = 50
    lstmbatchsize = 256

    nestimators = nestimators[0] * 100
    nfolds = 5

    print lstmsize, lstmdropout, lstmoptim, nestimators

    # Load the dataset
    static_train = np.load(
        '/storage/hpc_anna/GMiC/Data/BPIChallenge/f1/preprocessed/train_static.npy'
    )
    dynamic_train = np.load(
        '/storage/hpc_anna/GMiC/Data/BPIChallenge/f1/preprocessed/train_dynamic.npy'
    )
    static_val = np.load(
        '/storage/hpc_anna/GMiC/Data/BPIChallenge/f1/preprocessed/test_static.npy'
    )
    dynamic_val = np.load(
        '/storage/hpc_anna/GMiC/Data/BPIChallenge/f1/preprocessed/test_dynamic.npy'
    )
    labels_train = np.load(
        '/storage/hpc_anna/GMiC/Data/BPIChallenge/f1/preprocessed/train_labels.npy'
    )
    labels_val = np.load(
        '/storage/hpc_anna/GMiC/Data/BPIChallenge/f1/preprocessed/test_labels.npy'
    )

    # Merge train and test
    static_all = np.concatenate((static_train, static_val), axis=0)
    dynamic_all = np.concatenate((dynamic_train, dynamic_val), axis=0)
    labels_all = np.concatenate((labels_train, labels_val), axis=0)
    nsamples = static_all.shape[0]

    # prepare where to store the ratios
    ratios_all_lstm = np.empty(len(labels_all))

    # split indices into folds
    enrich_idx_list = np.array_split(range(nsamples), nfolds)

    # run CV
    for fid, enrich_idx in enumerate(enrich_idx_list):
        train_idx = list(set(range(nsamples)) - set(enrich_idx))

        # extract predictions using LSTM on dynamic
        lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs,
                                lstmbatchsize)
        model_pos, model_neg = lstmcl.train(dynamic_all[train_idx],
                                            labels_all[train_idx])
        ratios_all_lstm[enrich_idx] = lstmcl.pos_neg_ratios(
            model_pos, model_neg, dynamic_all[enrich_idx])

    # dataset for hybrid learning
    enriched_by_lstm = np.concatenate(
        (static_all, np.matrix(ratios_all_lstm).T), axis=1)

    # (2.) k-fold cross validation to obtain accuracy
    val_idx_list = np.array_split(range(nsamples), nfolds)
    scores = []
    for fid, val_idx in enumerate(val_idx_list):
        train_idx = list(set(range(nsamples)) - set(val_idx))

        # Hybrid on features enriched by HMM (3)
        rf = RandomForestClassifier(n_estimators=nestimators)
        rf.fit(enriched_by_lstm[train_idx], labels_all[train_idx])
        scores.append(rf.score(enriched_by_lstm[val_idx], labels_all[val_idx]))

    print 'Result: %.4f' % np.mean(scores)
    return -np.mean(scores)
rf = RandomForestClassifier(n_estimators=nestimators)
rf.fit(trainA_static, trainA_labels)
predictions_trainB_rf = rf.predict_log_proba(trainB_static)
predictions_trainB_rf[predictions_trainB_rf == -inf] = np.min(
    predictions_trainB_rf[predictions_trainB_rf != -inf])
predictions_test_rf = rf.predict_log_proba(test_static)
predictions_test_rf[predictions_test_rf == -inf] = np.min(
    predictions_test_rf[predictions_test_rf != -inf])

# extract predictions using LSTM on dynamic
lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs,
                        lstmbatchsize)
model_pos, model_neg = lstmcl.train(trainA_dynamic, trainA_labels)
mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg, trainB_dynamic)
predictions_trainB_lstm = np.vstack((mse_pos, mse_neg)).T
ratios_trainB_lstm = lstmcl.pos_neg_ratios(model_pos, model_neg,
                                           trainB_dynamic)
mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg, test_dynamic)
predictions_test_lstm = np.vstack((mse_pos, mse_neg)).T
ratios_test_lstm = lstmcl.pos_neg_ratios(model_pos, model_neg, test_dynamic)

#
# Prepare combined datasets for the future experiments
#

# datasets for ensemble learning
trainB_predictions_combined_rf_lstm = np.concatenate(
    (predictions_trainB_rf,
     ratios_trainB_lstm.reshape((ratios_trainB_lstm.shape[0], 1))),
    axis=1)
test_predictions_combined_rf_lstm = np.concatenate(
    (predictions_test_rf,
enriched_val_data = np.hstack((static_val, val_ratios.reshape(len(val_ratios), 1)))

print "Training RF on the merged dataset..."
rf = RandomForestClassifier(n_estimators=rf_estimators, n_jobs=-1)
rf.fit(enriched_sh_data, sh_labels)
print "RF+HMM with enriched features on validation set: %.4f" % rf.score(enriched_val_data, labels_val)

# RF+LSTM
print "Evaluating RF+LSTM model:"

print "Training LSTM classifier..."
lstmcl = LSTMClassifier(2000, 0.5, 'adagrad', lstm_nepochs)
model_pos, model_neg = lstmcl.train(fh_data, fh_labels)

print "Extracting ratios based on the LSTM model..."
sh_ratios = lstmcl.pos_neg_ratios(model_pos, model_neg, sh_data)
val_ratios = lstmcl.pos_neg_ratios(model_pos, model_neg, dynamic_val)

print "Merging static features and LSTM-based ratios..."
enriched_sh_data = np.hstack((static_train[sh_idx, :], sh_ratios.reshape(len(sh_ratios), 1)))
enriched_val_data = np.hstack((static_val, val_ratios.reshape(len(val_ratios), 1)))

print "Training RF on the merged dataset..."
rf = RandomForestClassifier(n_estimators=rf_estimators, n_jobs=-1)
rf.fit(enriched_sh_data, sh_labels)
print "RF+LSTM with enriched features on validation set: %.4f" % rf.score(enriched_val_data, labels_val)




predictions_test_rf[predictions_test_rf == -inf] = np.min(predictions_test_rf[predictions_test_rf != -inf])

# extract predictions using HMM on dynamic
hmmcl = HMMClassifier()
model_pos, model_neg = hmmcl.train(nhmmstates, nhmmiter, hmmcovtype, trainA_dynamic, trainA_labels)
predictions_trainB_hmm = hmmcl.predict_log_proba(model_pos, model_neg, trainB_dynamic)
ratios_trainB_hmm = hmmcl.pos_neg_ratios(model_pos, model_neg, trainB_dynamic)
predictions_test_hmm = hmmcl.predict_log_proba(model_pos, model_neg, test_dynamic)
ratios_test_hmm = hmmcl.pos_neg_ratios(model_pos, model_neg, test_dynamic)

# extract predictions using LSTM on dynamic
lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs, lstmbatchsize)
model_pos, model_neg = lstmcl.train(trainA_dynamic, trainA_labels)
mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg, trainB_dynamic)
predictions_trainB_lstm = np.vstack((mse_pos, mse_neg)).T
ratios_trainB_lstm = lstmcl.pos_neg_ratios(model_pos, model_neg, trainB_dynamic)
mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg, test_dynamic)
predictions_test_lstm = np.vstack((mse_pos, mse_neg)).T
ratios_test_lstm = lstmcl.pos_neg_ratios(model_pos, model_neg, test_dynamic)


#
# Prepare combined datasets for the future experiments
#

# datasets for ensemble learning
trainB_predictions_combined_rf_hmm = np.concatenate((predictions_trainB_rf, ratios_trainB_hmm.reshape((ratios_trainB_hmm.shape[0], 1))), axis=1)
test_predictions_combined_rf_hmm = np.concatenate((predictions_test_rf, ratios_test_hmm.reshape((ratios_test_hmm.shape[0], 1))), axis=1)
trainB_predictions_combined_rf_lstm = np.concatenate((predictions_trainB_rf, ratios_trainB_lstm.reshape((ratios_trainB_lstm.shape[0], 1))), axis=1)
test_predictions_combined_rf_lstm = np.concatenate((predictions_test_rf, ratios_test_lstm.reshape((ratios_test_lstm.shape[0], 1))), axis=1)
    print "Current fold is %d" % fid
    train_idx = list(set(range(nsamples)) - set(predict_idx))
 
   
    #
    # Generative LSTM
    #
    print "    Extracting ratios and activations from generative LSTM..."

    # train the models
    lstmcl = LSTMClassifier(g_lstmsize, g_lstmdropout, g_lstmoptim, g_lstmnepochs, g_lstmbatch)
    model_pos, model_neg = lstmcl.train(dynamic_all[train_idx], labels_all[train_idx])
    
    # extract ratios
    mse_pos, mse_neg = lstmcl.predict_mse(model_pos, model_neg, dynamic_all[predict_idx]) 
    ratios_generative[predict_idx] = lstmcl.pos_neg_ratios(model_pos, model_neg, dynamic_all[predict_idx])

    # extract activations
    activations_pos = lstmcl.activations(model_pos, dynamic_all[predict_idx])
    activations_neg = lstmcl.activations(model_neg, dynamic_all[predict_idx])
    activations_generative[predict_idx] = np.concatenate((activations_pos[:, -1, :], activations_neg[:, -1, :]), axis=1)


    #
    # Discriminative LSTM
    #
    print "    Extracting ratios and activations from discriminative LSTM..."

    # train the model
    lstmcl = LSTMDiscriminative(d_lstmsize, d_lstmdropout, d_lstmoptim, d_lstmnepochs, d_lstmbatch)
    model = lstmcl.train(dynamic_all[train_idx], labels_all[train_idx])
Esempio n. 11
0
# prepare where to store the ratios
ratios_all_lstm = np.empty(len(labels_all))

# split indices into folds
enrich_idx_list = np.array_split(range(nsamples), nfolds)

# CV for feature enrichment
for fid, enrich_idx in enumerate(enrich_idx_list):
    print "Current fold is %d / %d" % (fid + 1, nfolds)
    train_idx = list(set(range(nsamples)) - set(enrich_idx))

    # extract ratios using LSTM on dynamic
    lstmcl = LSTMClassifier(lstmsize, lstmdropout, lstmoptim, lstmnepochs, lstmbatchsize)
    model_pos, model_neg = lstmcl.train(dynamic_all[train_idx], labels_all[train_idx])
    ratios_all_lstm[enrich_idx] = lstmcl.pos_neg_ratios(model_pos, model_neg, dynamic_all[enrich_idx])

# dataset for hybrid learning
enriched_by_lstm = np.concatenate((static_all, np.matrix(ratios_all_lstm).T), axis=1)

# CV for accuracy estimation
val_idx_list = np.array_split(range(nsamples), nfolds)
scores = []
for fid, val_idx in enumerate(val_idx_list):
    print "Current fold is %d / %d" % (fid + 1, nfolds)
    train_idx = list(set(range(nsamples)) - set(val_idx))
    
    # Hybrid on features enriched by HMM (3)
    rf = RandomForestClassifier(n_estimators=nestimators)
    rf.fit(enriched_by_lstm[train_idx], labels_all[train_idx])
    scores.append(rf.score(enriched_by_lstm[val_idx], labels_all[val_idx]))