Esempio n. 1
0
def loadOfficialTestSpecs(args, restoreModel, restoreModelPath, config=None):
    if config is None:
        config = CNNGPUConfig(load=True, args=args)

    testReader = TestProcessor(qnFile=config.testOfficialDevQns,
                               imgPathsFile=config.testOfficialImgPaths,
                               config=config)

    model = LSTMCNNModel(config)
    model.loadTrainedModel(restoreModel, restoreModelPath)

    filename = 'toSubmit{}.json'.format(restoreModelPath.split('/')[-2])
    model.runTest(testReader, filename)
    model.destruct()
    return config
Esempio n. 2
0
def loadOfficialTest(args):
    if args.config == 'CPU':
        config = CNNLapConfig(load=True, args=args)
    elif args.config == 'GPU':
        config = CNNGPUConfig(load=True, args=args)

    testReader = TestProcessor(qnFile=config.testOfficialDevQns,
                               imgFile=config.testOfficialImgPaths,
                               config=config)

    model = LSTMCNNModel(config)
    model.loadTrainedModel(config.restoreModel, config.restoreModelPath)
    model.runTest(testReader, config.testOfficialResultFile)
    model.destruct()
    testReader.destruct()
Esempio n. 3
0
def loadOfficialTest(args, restoreModel=None, restoreModelPath=None):
    if args.config == 'CPU':
        config = CNNLapConfig(load=True, args=args)
    elif args.config == 'GPU':
        config = CNNGPUConfig(load=True, args=args)

    testReader = TestProcessor(qnFile=config.testOfficialDevQns,
                               imgFile=config.testOfficialImgPaths,
                               config=config)

    model = LSTMCNNModel(config)
    model.loadTrainedModel(restoreModel, restoreModelPath)
    model.runTest(testReader, '25AprLSTMCNNSubmission.json')
    model.destruct()
    testReader.destruct()
Esempio n. 4
0
def runValTest(args):
    #Val set's split -- test
    print('Running Val Test')
    if args.config == 'CPU':
        config = CNNLapConfig(load=True, args=args)
    elif args.config == 'GPU':
        config = CNNGPUConfig(load=True, args=args)
    valTestReader = InputProcessor(config.testAnnotFile,
                                   config.rawQnValTestFile,
                                   config.valImgPaths,
                                   config,
                                   is_training=False)

    model = LSTMCNNModel(config)
    model.loadTrainedModel(config.restoreModel, config.restoreModelPath)
    model.runPredict(valTestReader, config.csvResults)
    model.destruct()
    valTestReader.destruct()
Esempio n. 5
0
def runtrain(args):
    if args.config == 'CPU':
        config = CNNLapConfig(load=True, args=args)
    elif args.config == 'GPU':
        config = CNNGPUConfig(load=True, args=args)

    trainReader = InputProcessor(config.trainAnnotFile,
                                 config.rawQnTrain,
                                 config.trainImgPaths,
                                 config,
                                 is_training=True)

    valReader = InputProcessor(config.valAnnotFile,
                               config.rawQnValTestFile,
                               config.valImgPaths,
                               config,
                               is_training=False)

    model = LSTMCNNModel(config)

    model.construct()
    model.train(trainReader, valReader, config.logFile)
    model.destruct()