def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32,
                                                          copy=False)
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) /
                   np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return np.hstack((labels[:, np.newaxis], targets)).astype(np.float32,
                                                              copy=False)
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
                / np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return np.hstack(
            (labels[:, np.newaxis], targets)).astype(np.float32, copy=False)