Esempio n. 1
0
def reconstruct(
        autoencoder_in=None,
        dataset='mnist.pkl.gz',
        batch_size=8
               ):

    # Loads the parameters of a trained model
    # Takes a test case, run it through the 
    # trained autoencoder, and plot the reconstructed version
    # to see how our autoencoder generalizes an arbitrary case.
    
    if not autoencoder_in:
        W, hbias, vbias = load_parameters()
        autoencoder_in = autoencoder(W = W, hbias = hbias, vbias = vbias)
    
    test_set_x, test_set_y = load_data(dataset)[2]
    x = T.matrix('x')
    index = T.iscalar('index')

    pre_output = autoencoder_in.test_prop(input = x, params = autoencoder_in.params)
    reconstruct = autoencoder_in.layer_info[0](pre_output)
    error = autoencoder_in.gradient_reconstruction_error(input = x, phase = 'test', params = autoencoder_in.params)
                                        
    sgd_test = theano.function(
                    [index],
                    [reconstruct, error],
                    givens = {
                        x : test_set_x[
                                index * batch_size : 
                                (index + 1) * batch_size
                                      ]
                             },
                    name = 'sgd_test'
                              )
    
    original = test_set_x.get_value(borrow=True)[8:16]
    reconstructed, error = sgd_test(1)

    print 'Reconstruction error is %3f' % error
    
    images = np.append(
             original, reconstructed
                      ).reshape((batch_size * 2, 28*28))

    print images.shape[0], images.shape[1]

    images = Image.fromarray(
                tile_raster_images(
                    X = images,
                    img_shape = (28, 28),
                    tile_shape = (2, batch_size),
                    tile_spacing = (2,2)
                                  )
                            )
    
    images.save('autoencoder_reconstructed_images.png')
    
    pass
Esempio n. 2
0
def Sample(dataset="mnist.pkl.gz", random_initialization=True, sample_every=1000, no_samples=1):

    # Initialize sample randomly if random_initialization = True.
    # For a Gibbs chain, take a sample after (sample_every) steps.
    # no_samples: int, how many samples to be taken.

    RBMin = RBM(resume=True)
    datasets = load_data(dataset)
    test_set_x, test_set_y = datasets[2]  # Chose test set
    nrg = np.random.RandomState()

    if random_initialization:
        chain_start = theano.shared(nrg.uniform(low=0.0, high=1.0, size=(28 * 28,)).astype("float32"))
    else:
        chain_start = theano.shared(
            test_set_x.get_value(borrow=True)[np.floor(28 * 28 * nrg.uniform(low=0.0, high=5.0)).astype("int32")]
        )
        # Run a single round of Gibbs sampler
    ([h0_pre, h0_mean, h0, v1_pre, v1_mean, v1], updates) = theano.scan(
        RBMin.GS_vhv, outputs_info=[None, None, None, None, chain_start, None], n_steps=sample_every
    )

    # Update the updates dictionary
    updates[chain_start] = v1_mean[-1]
    GS = theano.function([], [v1_mean[-1], v1[-1]], updates=updates, name="Gibbs Sampler")

    # Plot samples.
    # Flattened and reshaped accordingly so that each row
    # represents an image
    start_time = timeit.default_timer()

    images = np.array([GS() for i in range(no_samples)], "float32").flatten().reshape((2 * no_samples, 28 * 28))
    images = Image.fromarray(
        tile_raster_images(X=images, img_shape=(28, 28), tile_shape=(no_samples, 2), tile_spacing=(1, 5))
    )

    images.save("RBM_generated_samples.png")
    end_time = timeit.default_timer()

    print "Sampling took %f minutes" % ((end_time - start_time) / 60.0)
Esempio n. 3
0
def test_mlp(learning_rate=0.01,
             L1_reg=0.00,
             L2_reg=0.0001,
             n_epochs=1000,
             dataset='../data/mnist.pkl.gz',
             batch_size=20,
             n_hidden=500):
    """
	Demonstrate stochastic gradient descent optimization for a multilayer
	perceptron

	This is demonstrated on MNIST

	:type learning_rate: float
	:paran learning_rate: learning rate used (factor for the stochastic gradient)

	:type L1_reg: float
	:param L1_reg: L1-norm's weight when added to the cost (see
	regularization)

	:type L2_reg: float
	:param L2_reg: L2-norm's weight when added to the cost (see
	regularization)

	:type n_epochs: int
	:params n_epochs: maximal number of epochs to run the optimizer

	:type dataset: string
	:param dataset: the path of the MNIST dataset file from
	             http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

	"""
    datasets = load_data(
        dataset)  # use the load_data()from logisticRegression module

    # datasets[0]:train info, datasets[1]:valid info, datasets[2]:test info, all of them are tuple,
    # details in Theano
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    #####################
    #BUILD ACTUAL MODEL #
    #####################

    print '... building the model'

    # allocate symbolic variables for the data,info include index, raterized images
    # labels.
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as raterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class, n_in the dimensionty of input,n_out: the number
    # of the label, in this experiment it is 10 (digit:0-9)
    classifier = MLP(rng=rng,
                     input=x,
                     n_in=28 * 28,
                     n_hidden=n_hidden,
                     n_out=10)

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = classifier.negative_log_likelihood(y) \
      + L1_reg * classifier.L1 \
      + L2_reg * classifier.L2_sqr

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch,计算每个minibatch中与model的误差
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })
    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # compute the gradient of cost with respect to theta (sorted in params)
    # the resulting gradients will be stored in a list gparas,计算响应的梯度,
    # 用于mlp反向传输来调整各个节点的权值
    gparams = []
    for param in classifier.params:
        gparam = T.grad(cost, param)
        gparams.append(gparam)

    # specify how to upate the parameters of the model as a list of
    # (variable, update expression) pairs
    updates = []
    # given two list the zip A =[a1, a2, a3, a4] and B=[b1, b2, b3, b4] of
    # same length, zip generates a list C of same size, where each element
    # is a pair formed from the two lists:
    #	c = [(a1, b1),(a2,b2),(a3,b3),(a4,b4)]
    #	create a rule defined by the code
    for param, gparam in zip(classifier.params, gparams):
        updates.append(
            (param, param - learning_rate *
             gparam))  # in logisticRegression, it called gradient descent

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'

    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is found

    improvement_threshold = 0.995  # a relative improvement of this muchi is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_model(
                minibatch_index)  # 利用前面使用theano创建的train_model函数得到相应地cost函数
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # computer zero-one loss on validation set
                validation_losses = [
                    validate_model(i) for i in xrange(n_valid_batches)
                ]
                this_validation_loss = numpy.mean(validation_losses)

                print('epoch %i, minibatch %o/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    # improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss * improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i) for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)

                    print(('	epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print(('Optimization complete. Best validation score of %f %%'
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.0))
Esempio n. 4
0
              seq_hidden = [200,150,100,100,100],
                      )
    
    params = auto.params
    params_moving = [theano.shared(param.get_value()) for param in params]
    gradient_batch = T.matrix('batch')
    curvature_batch = gradient_batch
    pre_output, curvature_cost = auto.curvature_reconstruction_error(
                                     input = gradient_batch,
                                     phase = 'train',
                                     params = params      )
    gradient_cost = lambda params: auto.gradient_reconstruction_error(
                                    input = gradient_batch,
                                    phase = 'train',
                                    params = params         )
    datasets = load_data('mnist.pkl.gz')
    data = datasets[0][0]
    data_size = data.get_value(borrow=True).shape[0]
    gradient_batch_size = 1000
    curvature_batch_size = 1000
    damping_constant = theano.shared(np.array(1., 'float32'))
    n_epochs = 20
    no_iterations = 30

    HF = HF(params = params,
            params_moving = params_moving,
            gradient_batch = gradient_batch,
            curvature_batch = curvature_batch,
            pre_output = pre_output,
            curvature_cost = curvature_cost,
            gradient_cost = gradient_cost,
Esempio n. 5
0
def test_mlp(
    learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000, dataset="mnist.pkl.gz", batch_size=20, n_hidden=500
):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz


   """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    print "... building the model"

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix("x")  # the data is presented as rasterized images
    y = T.ivector("y")  # the labels are presented as 1D vector of
    # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(rng=rng, input=x, n_in=28 * 28, n_hidden=n_hidden, n_out=10)

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = classifier.negative_log_likelihood(y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size : (index + 1) * batch_size],
            y: test_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size : (index + 1) * batch_size],
            y: valid_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [(param, param - learning_rate * gparam) for param, gparam in zip(classifier.params, gparams)]

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size : (index + 1) * batch_size],
            y: train_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    print "... training"

    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.0
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)

                print (
                    "epoch %i, minibatch %i/%i, validation error %f %%"
                    % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.0)
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    # improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss * improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print (
                        ("     epoch %i, minibatch %i/%i, test error of " "best model %f %%")
                        % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.0)
                    )

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print (
        (
            "Optimization complete. Best validation score of %f %% "
            "obtained at iteration %i, with test performance %f %%"
        )
        % (best_validation_loss * 100.0, best_iter + 1, test_score * 100.0)
    )
    print >> sys.stderr, (
        "The code for file " + os.path.split(__file__)[1] + " ran for %.2fm" % ((end_time - start_time) / 60.0)
    )
def test_mlp(learning_rate = 0.01, L1_reg = 0.00, L2_reg = 0.0001, n_epochs=1000,
		dataset = '../data/mnist.pkl.gz', batch_size = 20, n_hidden = 500):
	"""
	Demonstrate stochastic gradient descent optimization for a multilayer
	perceptron

	This is demonstrated on MNIST

	:type learning_rate: float
	:paran learning_rate: learning rate used (factor for the stochastic gradient)

	:type L1_reg: float
	:param L1_reg: L1-norm's weight when added to the cost (see
	regularization)

	:type L2_reg: float
	:param L2_reg: L2-norm's weight when added to the cost (see
	regularization)

	:type n_epochs: int
	:params n_epochs: maximal number of epochs to run the optimizer

	:type dataset: string
	:param dataset: the path of the MNIST dataset file from
	             http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

	"""
	datasets = load_data(dataset) # use the load_data()from logisticRegression module

	# datasets[0]:train info, datasets[1]:valid info, datasets[2]:test info, all of them are tuple,
	# details in Theano
	train_set_x, train_set_y = datasets[0]
	valid_set_x, valid_set_y = datasets[1]
	test_set_x, test_set_y = datasets[2]

	# compute number of minibatches for training, validation and testing
	n_train_batches = train_set_x.get_value(borrow = True).shape[0] / batch_size
	n_valid_batches = valid_set_x.get_value(borrow = True).shape[0] / batch_size
	n_test_batches = test_set_x.get_value(borrow = True).shape[0] / batch_size

	#####################
	#BUILD ACTUAL MODEL #
	#####################

	print '... building the model'

	# allocate symbolic variables for the data,info include index, raterized images
	# labels.
	index = T.lscalar() # index to a [mini]batch
	x = T.matrix('x')	# the data is presented as raterized images
	y = T.ivector('y')  # the labels are presented as 1D vector of [int] labels

	rng = numpy.random.RandomState(1234)

	# construct the MLP class, n_in the dimensionty of input,n_out: the number
	# of the label, in this experiment it is 10 (digit:0-9)
	classifier = MLP(rng = rng, input = x, n_in =28*28,
			n_hidden = n_hidden, n_out = 10)

	# the cost we minimize during training is the negative log likelihood of
	# the model plus the regularization terms (L1 and L2); cost is expressed
	# here symbolically
	cost = classifier.negative_log_likelihood(y) \
			+ L1_reg * classifier.L1 \
			+ L2_reg * classifier.L2_sqr

	# compiling a Theano function that computes the mistakes that are made
	# by the model on a minibatch,计算每个minibatch中与model的误差
	test_model = theano.function(inputs = [index],
			outputs = classifier.errors(y),
			givens = {
				x: test_set_x[index * batch_size:(index+1)*batch_size],
				y: test_set_y[index * batch_size:(index+1)*batch_size]})
	validate_model = theano.function(inputs = [index],
			outputs = classifier.errors(y),
			givens = {
				x: valid_set_x[index * batch_size:(index+1)*batch_size],
				y: valid_set_y[index * batch_size:(index+1)*batch_size]})

	# compute the gradient of cost with respect to theta (sorted in params)
	# the resulting gradients will be stored in a list gparas,计算响应的梯度,
	# 用于mlp反向传输来调整各个节点的权值
	gparams = []
	for param in classifier.params:
		gparam = T.grad(cost, param)
		gparams.append(gparam)


	# specify how to upate the parameters of the model as a list of
	# (variable, update expression) pairs
	updates = []
	# given two list the zip A =[a1, a2, a3, a4] and B=[b1, b2, b3, b4] of
	# same length, zip generates a list C of same size, where each element
	# is a pair formed from the two lists:
	#	c = [(a1, b1),(a2,b2),(a3,b3),(a4,b4)]
	#	create a rule defined by the code
	for param, gparam in zip(classifier.params, gparams):
		updates.append((param, param - learning_rate * gparam)) # in logisticRegression, it called gradient descent

	# compiling a Theano function `train_model` that returns the cost, but
	# in the same time updates the parameter of the model based on the rules
	# defined in `updates`
	train_model = theano.function(inputs = [index], outputs = cost,
			updates = updates,
			givens = {
				x: train_set_x[index * batch_size:(index + 1)*batch_size],
				y: train_set_y[index * batch_size:(index + 1)*batch_size]})

	###############
	# TRAIN MODEL #
	###############
	print '... training'

	# early-stopping parameters
	patience = 10000 # look as this many examples regardless
	patience_increase = 2 # wait this much longer when a new best is found

	improvement_threshold = 0.995 # a relative improvement of this muchi is
	                              # considered significant
	validation_frequency = min(n_train_batches, patience / 2)


	best_params = None
	best_validation_loss = numpy.inf
	best_iter = 0
	test_score = 0.
	start_time = time.clock()

	epoch = 0
	done_looping =False

	while (epoch < n_epochs) and (not done_looping):
		epoch = epoch + 1
		for minibatch_index in xrange(n_train_batches):

			minibatch_avg_cost = train_model(minibatch_index) # 利用前面使用theano创建的train_model函数得到相应地cost函数
			# iteration number
			iter = (epoch -1 )* n_train_batches + minibatch_index

			if (iter + 1) % validation_frequency == 0:
				# computer zero-one loss on validation set
				validation_losses = [validate_model(i) for i
						in xrange(n_valid_batches)]
				this_validation_loss = numpy.mean(validation_losses)

				print('epoch %i, minibatch %o/%i, validation error %f %%' %
						(epoch,minibatch_index + 1,n_train_batches,
							this_validation_loss * 100.))

				# if we got the best validation score until now
				if this_validation_loss < best_validation_loss:
					# improve patience if loss improvement is good enough
					if this_validation_loss < best_validation_loss * improvement_threshold:
						patience = max(patience,iter * patience_increase)

					best_validation_loss = this_validation_loss
					best_iter = iter

					# test it on the test set
					test_losses = [test_model(i) for i in xrange(n_test_batches)]
					test_score = numpy.mean(test_losses)

					print(('	epoch %i, minibatch %i/%i, test error of '
						'best model %f %%') %
						(epoch, minibatch_index + 1, n_train_batches,
							test_score * 100.))

			if patience <= iter:
				done_looping = True
				break

	end_time = time.clock()
	print(('Optimization complete. Best validation score of %f %%'
			'obtained at iteration %i, with test performance %f %%') %
		(best_validation_loss *100., best_iter + 1, test_score *100.))
	print >> sys.stderr,('The code for file' +
			os.path.split(__file__)[1]+
			' ran for %.2fm' % ((end_time - start_time)/60.0))
Esempio n. 7
0
def SGD(autoencoder_in=None,
        resume=False,
        batch_size = 20,
        n_epochs=200,
        improvement_ratio=1.,
        patience=10,
        dropout=[],
        validation_freq=1,
        lr=0.01,
        lr_decay=0.1,
        momentum=0.9,
        dataset='mnist.pkl.gz'
       ):
	
	# param autoencoder: autoencoder class instance
	
	# type resume: bool
	# param resume: whether to resume training from 
	#				saved parameters
	
	# type batch_size: int
	# param batch_size: batch size
	
	# type n_epochs: int
	# param n_epochs: maximum # of epochs to train for
	
	# type improvement_ratio: float
	# param imporvement_ratio: if validation error decreases
	# 			by this much, then consider an improvement.
	
	# type patience: int
	# param patience: How many times to persevere until
	# 				  dropping the learning rate
	
	# type validation_freq: int
	# param validation_freq: How often the validation will
	# 						 be performed (every epoch, e.g.)
	
	# type lr: float
	# param lr: learning rate
	
	# type lr_decay: float
	# param lr_decay: learning rate decay constant
	
	# type momentum: float
	# param momentum: momentum

    start_compile = timeit.default_timer()

    if resume:
        W, hbias, vbias = load_parameters(
                        filename='autoencoder_params.save'
                                         )
        autoencoder_in = autoencoder(
                    W = W,
                    hbias = hbias,
                    vbias = vbias,
                    seq_hidden = [
                                    h.get_value(borrow=True).shape[0] 
                                    for h in hbias
                                 ],
                    n_hidden = len(hbias),
                    dropout = dropout
                            )

    if not autoencoder_in:
        autoencoder_in = autoencoder() # initialize with a single hidden layer autoencoder
    
    # Load MNIST dataset
    datasets = load_data(dataset)
    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]

    # # batches
    n_batch_train = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_batch_valid = valid_set_x.get_value(borrow=True).shape[0] / batch_size

    # Define train, valid, test optimizers for a single iteration
    index = T.iscalar('index')
    x = T.matrix('x')
    autoencoder_in.learning_rate.set_value(
                                np.array(lr, 'float32')
                                          )

    cost_train, updates = autoencoder_in.param_cost_updates(
                                            input = x,
                                            momentum = momentum,
                                            params = autoencoder_in.params
                                                           )

    cost_valid = autoencoder_in.gradient_reconstruction_error(
                                        input = x,
                                        phase = 'valid',
                                        params = autoencoder_in.params
                                                             )
    

    sgd_train = theano.function(
                    [index],
                    cost_train,
                    updates = updates,
                    givens = {
                        x : train_set_x[
                                index * batch_size : 
                                (index + 1) * batch_size
                                       ]
                             },
                    name = 'sgd_train'
                               )
    
    sgd_valid = theano.function(
                    [index],
                    cost_valid,
                    givens = {
                        x : valid_set_x[
                                index * batch_size : 
                                (index + 1) * batch_size
                                       ]
                             },
                    name = 'sgd_valid'
                               )

#    theano.printing.pydotprint(cost_train, outfile='symbolic_graph_unopt.png', var_with_name_simple=True)
#    theano.printing.pydotprint(sgd_train, outfile='symbolic_graph_opt.png', var_with_name_simple=True)

    end_compile = timeit.default_timer()

    print 'Compiling took %2f seconds' % (end_compile - start_compile)

    continue_time = 0.  # parameter in case training is continued
    start_train = timeit.default_timer()

    # Begin training
    if resume:
        histories = pickle.load(file('autoencoder_error.save', 'rb'))
        train_history, valid_history, test_history = \
            [h if h else [] for h in histories]
        continue_time = train_history[-1][0]
        
    else:
        train_history, valid_history, test_history = [], [], []
    
    patience_init = patience

    for epoch in range(n_epochs):

        train_error, valid_error, test_error = [], [], []

        if patience_init == 0:
            break

        for iter in range(n_batch_train):
            error = sgd_train(iter)
            train_error.append(error)
            if iter % 50 == 0:
                print 'training error at iter %d is...' % iter, error
        
        intermediate_time = timeit.default_timer()
        
        train_history.append(
            (intermediate_time - start_train + continue_time, 
             sum(train_error) / len(train_error))
                            )

        if epoch % validation_freq == 0:
            # Validation
            for iter in range(n_batch_valid):
                error = sgd_valid(iter)
                valid_error.append(error)
            
            intermediate_time_ = timeit.default_timer()
            
            valid_history.append(
                (intermediate_time_ - start_train + continue_time,
                 sum(valid_error) / len(valid_error))
                                )
                                
            print 'validation error at epoch %d is...' % epoch, valid_history[-1]

        patience_init -= 1

        if epoch > 0 and valid_history[-1][-1] < improvement_ratio * valid_history[-2][-1]:
            patience_init += patience
        else:
            autoencoder_in.learning_rate.set_value(
                autoencoder_in.learning_rate.get_value() * 
                np.array(lr_decay, 'float32')     )
            if autoencoder_in.learning_rate.get_value() == lr * 1e-4:
                break

        save_parameters(params = autoencoder_in.params)
        save_history(
            train_history = train_history,
            valid_history = valid_history
                    )

    end_train = timeit.default_timer()
    print 'Training took %3f seconds' % (end_train - start_train)

    pass
Esempio n. 8
0
def train_RBM(
    RBMin=None,
    lr=0.01,
    lr_decay=0.1,
    momentum=0.9,
    improvement_ratio=0.95,
    batch_size=20,
    dataset="mnist.pkl.gz",
    epochs=15,
    n_hidden=500,
    n_chains=20,
    n_samples=10,
):

    # n_chains: int, # of parallel Gibbs chains to be used for sampling
    # n_samples: int, # samples to plot for each chain

    lr_init = lr
    if not RBMin:
        RBMin = RBM()

    datasets = load_data(dataset)
    train_set_x, train_set_y = datasets[0]
    test_set_x, test_set_y = datasets[2]
    index = T.iscalar()
    x = T.matrix()

    xent, updates = CD_k(RBMin, input=x, lr=lr)

    optimize = theano.function(
        [index],
        xent,
        updates=updates,
        givens={x: train_set_x[index * batch_size : (index + 1) * batch_size]},
        name="optimize",
    )

    n_batch = train_set_x.get_value().shape[0] / batch_size
    train_error = np.array([], "float64")
    learning_rate = []

    start_time = timeit.default_timer()
    for epoch in range(epochs):
        print "epoch %d:" % epoch, "\n"
        for iter in range(n_batch):
            error = optimize(iter)
            if iter % 250 == 0:
                # print Recon error every 5000 examples & save in train_error for later plotting
                print "Reconstruction error at iteration %d:" % (iter * batch_size), error
                train_error = np.append(train_error, error)

                # Check if the recon error of the last epoch has improved.
                # If yes, maintain the current learning rate.
                # Otherwise, lr = lr * lr_decay
                # Check last 25,000 examples.
                # Save the learning rate
        print "\n", "learning rate for epoch %d: %f" % (epoch, lr), "\n"
        learning_rate.append(lr)

        if epoch > 0:
            if (
                train_error[-5:].mean()
                > improvement_ratio
                * train_error[-5 - 50000.0 / (250 * batch_size) : -50000.0 / (250 * batch_size)].mean()
            ):
                lr = lr * lr_decay
            xent, updates = CD_k(RBMin, input=x, lr=lr)

            # Save models & train_error each epoch
        f = file("RBM_weights.save", "wb")
        pickle.dump(RBMin.W.get_value(borrow=True), f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("RBM_hbias.save", "wb")
        pickle.dump(RBMin.hbias.get_value(borrow=True), f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("RBM_vbias.save", "wb")
        pickle.dump(RBMin.vbias.get_value(borrow=True), f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("train_error.save", "wb")
        pickle.dump(train_error, f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()
        f = file("learning_rate.save", "wb")
        pickle.dump(learning_rate, f, protocol=pickle.HIGHEST_PROTOCOL)
        f.close()

        # plot weights at each epoch
        image = Image.fromarray(
            tile_raster_images(
                X=RBMin.W.get_value(borrow=True).T, img_shape=(28, 28), tile_shape=(20, 20), tile_spacing=(1, 1)
            )
        )

        image.save("Weights_at_epoch_%d.png" % (epoch + 2))

        # Stop training if learning rate becomes too low
        # This means objective is simply not improving
        if lr <= lr_init * 0.001:
            break

            # plot the training procedure
    _, axis = pylab.subplots()
    grid = np.arange(len(train_error))
    axis.plot(grid, train_error)
    pylab.plot()
    pylab.show()

    end_time = timeit.default_timer()

    pretraining_time = end_time - start_time
    print "Pretraining took %f minutes" % (pretraining_time / 60.0)
Esempio n. 9
0
def evaluate_lenet5(learning_rate=0.1, n_epochs=200,
                    dataset='mnist.pkl.gz',
                    nkerns=[20, 50], batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (28, 28) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 1, 28, 28))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
    # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12)
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, 28, 28),
        filter_shape=(nkerns[0], 1, 5, 5),
        poolsize=(2, 2)
    )

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
    # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
    layer1 = LeNetConvPoolLayer(
        rng,
        input=layer0.output,
        image_shape=(batch_size, nkerns[0], 12, 12),
        filter_shape=(nkerns[1], nkerns[0], 5, 5),
        poolsize=(2, 2)
    )

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
    # or (500, 50 * 4 * 4) = (500, 800) with the default values.
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(
        rng,
        input=layer2_input,
        n_in=nkerns[1] * 4 * 4,
        n_out=500,
        activation=T.tanh
    )

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-1

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i)
                        for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i, '
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))