Esempio n. 1
0
def gradient_Descent(X, y, theta, alpha, epoch, l):
    cost_1 = []
    for i in range(epoch):
        theta = theta - alpha * (1 / len(X) *
                                 (sigmoid(X @ theta.T) - y).T @ X +
                                 l / len(X) * theta)
        # print(cost_reg(X,y,theta,l))
        cost_1.append(cost_reg(X, y, theta, l))
    return theta, cost_1
Esempio n. 2
0
def predict_tweet(tweet, freqs, theta):
    """

    :param tweet: a string
    :param freqs: a dictionary corresponding to frequency of each tupple (word,label)
    :param theta: (3,1) weight vector
    :return: y_pred: the probability of tweet being positive or negative
    """
    x = extract_features(tweet, freqs)
    y_pred = sigmoid(np.dot(x, theta))

    return y_pred
Esempio n. 3
0
# print("Entrenando")
# for i in range(k):
# 	progress(i + 1, k)
# 	tmp_y = np.array(y == i, dtype = int)
# 	optTheta = logisticRegression(X, tmp_y, np.zeros((n,1))).x
# 	all_theta[i] = optTheta
#
# #Salvo los vectores theta como un archivo csv
#
# predictores = pd.DataFrame(all_theta)
# predictores.to_csv('all_theta.csv',index = False)

#Predicciones para cada numero
p = np.zeros((m, 1))
for i in range(m):
    p[i] = np.argmax(sigmoid(X[i, :].dot(all_theta.T)))

s = sum([1 if p[i] == y[i] else 0 for i in range(m)])

print("\n\n")
print("Train Accuracy ", (s / m) * 100, " %")

plt.ion()  #modo interactivo
plt.gray()
fig = plt.figure()
out = "y"

all_theta = pd.read_csv('all_theta.csv').as_matrix()

print(all_theta.shape)
Esempio n. 4
0
    data = pd.read_csv("ex2data1.csv", names = ['test1', 'test2', 'condicion'])

    #Preparando los datos
    X = np.ones((100,3))
    y = np.ones((100,1))
    X[:,1] = data['test1'].values
    X[:,2] = data['test2'].values
    y[:,0] = data['condicion'].values
    m = len(y)
    initial_theta = np.zeros((3, 1))

    optimized_theta = logisticRegression(X, y, initial_theta).x


    #Predicciones para los datos de entrada
    p = sigmoid(X.dot(optimized_theta)) >= 0.5
    #Numero de predicciones exitosas
    s = sum([1 if p[i] == y[i] else 0 for i in range(m)])

    print("Train Accuracy ", (s / m) * 100 , " %")
    prob_test = sigmoid(np.array([1, 45, 85]).dot(optimized_theta))
    print('For a student with scores 45 and 85, we predict an admission probability of ', prob_test)

    #Graficando los datos
    admitidos = [x for x in data.values if x[2] == 1.]
    rechazados = [x for x in data.values if x[2] == 0.]
    plt.scatter([x[0] for x in admitidos], [y[1] for y in admitidos], s = 60, c = 'blue', marker='+',label = 'admitido')
    plt.scatter([x[0] for x in rechazados], [y[1] for y in rechazados], s = 60, c = 'red', marker='o',label = 'rechazado')
    plt.xlim(30,100)
    plt.ylim(30,100)
    plt.xlabel('Exam 1 Score')
Esempio n. 5
0
all_theta = np.zeros((k, n + 1))

#Entrenamiento
#OneVsAll
print("Entrenando")
i = 0
for flor in Species:
    progress(i + 1, k)
    tmp_y = np.array(y_train == flor, dtype=int)
    optTheta = logisticRegression(X_train, tmp_y, np.zeros((n + 1, 1))).x
    all_theta[i] = optTheta
    i += 1

#Predicciones

P = sigmoid(X_test.dot(all_theta.T))
p = [Species[np.argmax(P[i, :])] for i in range(X_test.shape[0])]

s = sum(np.array(p == y_test, dtype=int))

print("\n\n")
print("Test Accuracy ", (s / X_test.shape[0]) * 100, "%")

#Matrix de confusion
cfm = confusion_matrix(y_test, p, labels=Species)
#plt.yticks(cfm[:,0], Species, rotation = 'horizontal')
sb.heatmap(cfm, annot=True, xticklabels=Species, yticklabels=Species)

plt.show()