Esempio n. 1
0
 def __init__(self, filename="*&$#$%#", file_mode="r", cachesize=1048576):
     # If the filename isn't specified, use the default one (None has a
     # special meaning, so we can't use it - it means create a temp file)
     if filename == "*&$#$%#":
         filename = _DEFAULT_TREE_DATA
     logging.info("Initializing tree with data from %r", filename)
     self._tree = StringDBDict(persistent_file=filename,
                               file_mode=file_mode,
                               cachesize=cachesize)
     self._invlookup = None  # Init the inverse name lookup database lazily
     self._origname = filename
     self.terms = self._tree.keys()
     self.terms.sort()
     # This one is for speedy retrieval and indexing
     self._term_list_as_dict = None
     self._search_dict = None
     self.num_terms = len(self.terms)
     return
Esempio n. 2
0
 def __init__(self, reader, graph_builder, ranker, eval_parameters,
              ranking_cutoff, mesh_tree_filename, distance_matrix_filename,
              distance_function, umls_converter_data_filename,
              umls_concept_data_filename, output_file):
     logging.debug("Setting up a Workflow instance.")
     logging.debug("My reader is: %r", reader)
     self._reader = reader
     logging.debug("My graph builder is: %r", graph_builder)
     self._graph_builder = graph_builder
     self._ranker = MappedRanker(ranker)
     logging.debug("My ranker is: %r", self._ranker)
     self._ranking_cutoff = ranking_cutoff
     logging.debug("My ranking cutoff is: %r", self._ranking_cutoff)
     logging.debug("Creating a Tree instance from %s", mesh_tree_filename)
     self._mesh_tree = Tree(mesh_tree_filename)
     logging.debug(
         "Creating SAVCC distance matrix with %r and distance "
         "function %r", distance_matrix_filename, distance_function)
     self._matrix = SavccNormalizedMatrix(
         open(distance_matrix_filename, "rb"), distance_function)
     logging.debug("Filling in the rest of the evaluation parameters.")
     self._eval_parameters = eval_parameters
     self._eval_parameters.mesh_tree = self._mesh_tree
     self._eval_parameters.savcc_matrix = self._matrix
     logging.debug("My evaluation parameters are: %r",
                   self._eval_parameters)
     if umls_converter_data_filename is None:
         converter_data = None
     else:
         converter_data = pickle.load(
             open(umls_converter_data_filename, "rb"))
     self._umls_converter = RankedConverter(
         Converter(self._mesh_tree, converter_data))
     logging.debug("My converter is: %r", self._umls_converter)
     logging.debug("Initializing Concept storage from %s",
                   umls_concept_data_filename)
     if umls_concept_data_filename is None:
         Concept.init_storage()
     else:
         Concept.init_storage(StringDBDict(umls_concept_data_filename))
     self._output_file = output_file
     logging.debug("My output file is: %r", self._output_file)
     return
Esempio n. 3
0
def main():

    mrsty_file=sys.argv[3]
    original_filename=sys.argv[2]
    data_store_name=sys.argv[1]
    original_file=Text(bz2.BZ2File(original_filename, 'r'))
    print "Loading semantic types from %s" % mrsty_file
    stypes=SemanticTypes()
    stypes.build_from_mrsty_file(MRSTYTable(bz2.BZ2File(mrsty_file)))
    print "Semantic types loaded."
    print "Turning the data from %s into %s. Please wait." % (
            original_filename, data_store_name)
    data_store=StringDBDict(data_store_name, 
                            sync_every_transactions=0,
                            write_out_every_transactions=200000,
                            file_mode='c')
    data_store.sync_every=0
    build_concept_dictionary(original_file, data_store, stypes)
    data_store.sync_every=100
    print "Conversion done."
Esempio n. 4
0
 def __init__(self):
     try:
         self._cache_location = sys.argv[2]
     except IndexError:
         self._cache_location = DEFAULT_CACHE_NAME
     self._cache = StringDBDict(self._cache_location, file_mode="c")
Esempio n. 5
0
 def __init__(self):
     try:
         self._cache_location = sys.argv[2]
     except IndexError:
         self._cache_location = _DEFAULT_CONCEPT_STORAGE
     self._cache = StringDBDict(self._cache_location, file_mode="r")
Esempio n. 6
0
         chunk=chunk.strip()
         for k, v in tok_bact.iteritems():
             chunk=chunk.replace(k, v)
         if reduce(operator.or_, 
                   [x in chunk.lower() for x in useless_lines]): continue
         if len(chunk) < 2: continue
         outfile.write('%010d|%s\n' % (chunkid, chunk))
         chunkmap[fakename].append(chunkid)
         chunkid += 1
 outfile.close()
 print "Saving chunkmap"
 pickle.dump(chunkmap, open(outmapname, "wb"), pickle.HIGHEST_PROTOCOL)
 print "These files couldn't be processed:"
 print '\n'.join(skipped)
 print "Opening (or creating) cache in", sys.argv[2]
 the_cache=StringDBDict(os.path.join(sys.argv[2], DEFAULT_CACHE_NAME),
                        file_mode='c')
 PubMed.download_many([str(x) for x in known_articles if str(x) not in 
                       the_cache.keys()], download_callback,
                      parser=Medline.RecordParser())
 mti_filename=sys.argv[1]+'.mti'
 print "Finished processing the cache. Using the cache to build", \
        mti_filename
 mti_file=open(mti_filename, "w")
 chunkmap={}
 hexfinder=re.compile(r'\\x[a-f0-9][a-f0-9]', re.IGNORECASE)
 for article in known_articles:
     try:
         article_record=the_cache[str(article)]
     except KeyError:
         print "Article doesn't exist in cache. Skipping."
         continue
Esempio n. 7
0
            trees[term] = TreeNode(term, role, synonyms, set(position))
    return trees


if __name__ == "__main__":
    # The pickling and unpickling make this horribly slow, so we'll trade some
    # memory for speed in the build process and later turn the dictionary into
    # a DB-backed one.
    tree_storage = {}
    for treefile in sys.argv[2:]:
        treesfile = bz2.BZ2File(treefile, 'rU')
        print "Reading %s..." % treefile
        tree_storage = build_tree_from_descriptor_file(treesfile, tree_storage)

    print "Tree built. It has %d unique terms." % len(tree_storage)
    print "For example... arm=", tree_storage['arm'], " and eye=", \
          tree_storage['eye']
    print "Done generating tree."
    print "Storing tree in", sys.argv[1]
    tree_on_disk = StringDBDict(persistent_file=sys.argv[1],
                                sync_every_transactions=0,
                                write_out_every_transactions=0,
                                file_mode='c')
    write_counter = 0
    for k, v in tree_storage.iteritems():
        tree_on_disk[k] = v
        write_counter += 1
        if write_counter % 1000 == 0:
            print "Stored", write_counter, "terms."
    tree_on_disk.sync_every = 1
    print "Done storing."
Esempio n. 8
0
def multi_processor(reader,
                    workflow_class,
                    graph_builder_constructor, graph_builder_params,
                    ranker_constructor, ranker_params,
                    eval_parameters, 
                    ranking_cutoff,
                    mesh_tree_filename, distance_matrix_filename,
                    distance_function,
                    umls_converter_data_filename,
                    umls_concept_data_filename,
                    extra_data_name,
                    extra_data_contents,
                    output_file,
                    num_threads=None,
                    queue_size=None,
                    output_callback=output,
                    output_headers_callback=output_headers,
                    output_item_callback=output_one_item,
                    performance_tuning=True):
    """
    Perform the evaluation.
    Multithreading notes: It's the responsibility of the caller to make sure
    that extra_data_contents, if any, are thread-safe. 
    """
    if num_threads is None:
        num_threads=1

    logging.debug("Initializing Concept storage from %s", 
                  umls_concept_data_filename)
                  
    # Since there's no direct way of setting the concept cache's title, 
    # we set it here, wait for it to be inherited, and then get the 'real' 
    # process title for this one. 
    if umls_concept_data_filename is None:
        Concept.init_storage()
    else:
        Concept.init_storage(StringDBDict(umls_concept_data_filename))
    Pmid.init_storage()

    threads=[]
    logging.info("Creating %d worker threads.", num_threads)
    #task_queue=[JoinableQueue(queue_size) for x in xrange(num_processes)]
    task_queues=[Queue(queue_size) for x in xrange(num_threads)]
    this_output_queue=Queue(2*queue_size)

    # Create an output processor
    output_processor=Thread(target=output_callback, 
                             args=(output_file, 
                                   this_output_queue,
                                   output_headers_callback,
                                   output_item_callback))
    output_processor.start()
    
    for i in xrange(num_threads):
        this_thread=Thread(target=processor, args=(workflow_class,
                                                graph_builder_constructor, 
                                                graph_builder_params,
                                                ranker_constructor, 
                                                ranker_params,
                                                eval_parameters, 
                                                ranking_cutoff,
                                                mesh_tree_filename,
                                                distance_matrix_filename,
                                                distance_function,
                                                umls_converter_data_filename,
                                                extra_data_name,
                                                extra_data_contents,
                                                task_queues[i],
                                                this_output_queue),
                             name="MEDRank-Worker-%d" % i)
        logging.log(ULTRADEBUG, "Created thread: %r", this_thread)
        this_thread.start()
        threads.append((this_thread, this_output_queue, task_queues[i]))
    
    all_results={}
    count=0

    # Use a single dispatch queue for automagical load balancing
    # CHANGED - Now uses multiple queues to avoid starving due to waiting on semlocks
    for each_article in reader:
        count+=1
        # logging.info("Dispatching article %d: %r", count, each_article)
        target_thread=(count-1) % num_threads
        logging.info("Dispatching article %d: %s to %s", 
                     count,
                     each_article.set_id,
                     threads[target_thread][0].name)
        task_queues[target_thread].put(each_article)
        #task_queue[target_process].put(each_article)
        #task_queue.put(each_article)
        #logging.info("The task queue is approximately %d items long.", 
        #             task_queue.qsize())

    logging.log(ULTRADEBUG, "Waiting for processing to end.")
    all_results={}

    alive_threads=[x for x in threads if x[0].is_alive()]
    remaining_threads=len(alive_threads)

    logging.info("There are %d threads (out of %d) still alive.", 
                 remaining_threads,
                 num_threads)
    for i in xrange(remaining_threads):
        alive_threads[i][2].put('STOP')
        #alive_threads[i][2].close()
    logging.debug("Sent STOP requests. Notifying queue that no further "
                  "requests will come.")

    logging.info("All information sent to the threads.")

    # Note end of output

    while len(threads)>0:
        a_thread=threads.pop()
        # We join the process to wait for the end of the reading 
        a_thread[0].join()
        # logging.log(ULTRADEBUG, "Fetching results from finished process.")
        # all_results.update(a_process[1].get()) # Add results to result pool
        # logging.log(ULTRADEBUG, "Received results.")
    logging.info("Finishing writing out results.")
    this_output_queue.put("STOP")
    output_processor.join()
    logging.info("Results written. Finishing multithreading.")
    Pmid.close_storage()
    return
Esempio n. 9
0
def multi_processor(reader,
                    workflow_class,
                    graph_builder_constructor,
                    graph_builder_params,
                    ranker_constructor,
                    ranker_params,
                    eval_parameters,
                    ranking_cutoff,
                    mesh_tree_filename,
                    distance_matrix_filename,
                    distance_function,
                    umls_converter_data_filename,
                    umls_concept_data_filename,
                    extra_data_name,
                    extra_data_contents,
                    output_file,
                    num_processes=None,
                    queue_size=None,
                    output_callback=output,
                    output_headers_callback=output_headers,
                    output_item_callback=output_one_item,
                    performance_tuning=True):
    """
    Perform the evaluation.
    Multiprocessing notes: It's the responsibility of the caller to make sure that
    extra_data_contents, if any, are multiprocessing-safe. For example, by using
    a SyncManager and Namespace and passing the proxy. See umls/concept for an example.
    """

    if num_processes is None:
        num_processes = cpu_count()

    if performance_tuning:
        # Since reading the file involves an awful lot of object creation
        # and destruction we'll tweak the gc adjustments to sweep less frequently
        # IOW - we have a LOT of short-lived objects. No sense garbage-collecting
        # the latter generations very often.
        # (this is about 10x, 5x, and 5x the usual)
        original_threshold = gc.get_threshold()
        gc.set_threshold(10 * original_threshold[0], 5 * original_threshold[1],
                         5 * original_threshold[1])
        original_check_interval = sys.getcheckinterval()
        # Similarly, we'll try to minimize overhead from thread switches
        # 5x usual value
        sys.setcheckinterval(5 * original_check_interval)
    logging.debug("Initializing Concept storage from %s",
                  umls_concept_data_filename)

    if umls_concept_data_filename is None:
        Concept.init_storage()
    else:
        Concept.init_storage(StringDBDict(umls_concept_data_filename))
    Pmid.init_storage()

    proctitle.setproctitle("MEDRank-main")

    processes = []
    logging.info("Creating %d worker processes.", num_processes)
    #task_queue=[JoinableQueue(queue_size) for x in xrange(num_processes)]
    task_queues = [Queue(queue_size) for x in xrange(num_processes)]
    this_output_queue = Queue(2 * queue_size)

    # Create an output processor
    output_processor = Process(target=output_callback,
                               args=(output_file, this_output_queue,
                                     output_headers_callback,
                                     output_item_callback))
    output_processor.start()

    for i in xrange(num_processes):
        this_process = Process(
            target=processor,
            args=(workflow_class, graph_builder_constructor,
                  graph_builder_params, ranker_constructor, ranker_params,
                  eval_parameters, ranking_cutoff, mesh_tree_filename,
                  distance_matrix_filename, distance_function,
                  umls_converter_data_filename, extra_data_name,
                  extra_data_contents, task_queues[i], this_output_queue,
                  "MEDRank-Worker-%d" % i),
            name="MEDRank-Worker-%d" % i)
        logging.log(ULTRADEBUG, "Created process: %r", this_process)
        this_process.start()
        processes.append((this_process, this_output_queue, task_queues[i]))

    all_results = {}
    count = 0

    # Use a single dispatch queue for automagical load balancing
    # CHANGED - Now uses multiple queues to avoid starving due to waiting on semlocks
    for each_article in reader:
        count += 1
        #queues_and_sizes=[(task_queues[x].qsize(), x)
        #                  for x in xrange(num_processes)]
        #queues_and_sizes.sort()
        #target_process=queues_and_sizes[0][1]
        # logging.info("Dispatching article %d: %r", count, each_article)
        target_process = (count - 1) % num_processes
        #Lowest-loaded process first.
        logging.info("Dispatching article %d: %s to %s", count,
                     each_article.set_id, processes[target_process][0].name)
        task_queues[target_process].put(each_article)
        #task_queue[target_process].put(each_article)
        #task_queue.put(each_article)
        #logging.info("The task queue is approximately %d items long.",
        #             task_queue.qsize())

    logging.log(ULTRADEBUG, "Waiting for processing to end.")
    all_results = {}

    alive_processes = [x for x in processes if x[0].is_alive()]
    remaining_processes = len(alive_processes)

    logging.info("There are %d processes (out of %d) still alive.",
                 remaining_processes, num_processes)
    for i in xrange(remaining_processes):
        alive_processes[i][2].put('STOP')
        alive_processes[i][2].close()
    logging.debug("Sent STOP requests. Notifying queue that no further "
                  "requests will come.")

    logging.info("All information sent to the processors.")

    # Back to normal
    if performance_tuning:
        gc.set_threshold(original_threshold[0], original_threshold[1],
                         original_threshold[2])
        sys.setcheckinterval(original_check_interval)

    # Note end of output

    while len(processes) > 0:
        a_process = processes.pop()
        # We join the process to wait for the end of the reading
        a_process[0].join()
        # logging.log(ULTRADEBUG, "Fetching results from finished process.")
        # all_results.update(a_process[1].get()) # Add results to result pool
        # logging.log(ULTRADEBUG, "Received results.")
    logging.info("Finishing writing out results.")
    this_output_queue.put("STOP")
    output_processor.join()
    logging.info("Results written. Finishing multiprocessing.")
    return