(idPref,idSuf) = idSamp.rsplit('_',1) if idPref.startswith('NCBI'): return taxaTree.getNode(int(idSuf)) else: return None opt,args = getProgOptions() taxaTree = loadTaxaTreeNew() micNodes = [ taxaTree.getNode(id) for id in micTaxids ] phageNode = taxaTree.getNode(phageTailedTaxid) if not os.path.isfile(opt.modDump): som = GHSOM(opt.inName) som.setModelDir('.') mod = som.loadModel(components=("unit","weights")) samp = n.concatenate([ loadSparseSeqsAsDense(inSamp) for inSamp in opt.inSamp ]) mod.setSamples(samp) print "Mapping samples..." #mod.mapSamples(pmRadius=mod.paretoRadiusLenNormSamp) # Pareto radius is too large - U*-matrix is domnated by P-matrix mod.mapSamples(pmRadius=0.2) #0.2 #mod.mapSamples(pmRadius=None) mod.makeData() dumpObj(mod,opt.modDump) else: mod = loadObj(opt.modDump) mod.makeUStarMatrix() mod.makeUnit()
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the MGTAXA package for the # copyright and license terms. # ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## from MGT.GHSOM import * from MGT.Svm import * import pdb import pylab as pl som = GHSOM("all") som.setModelDir(os.path.join(options.testDataDir,"som/wd_2_0/grow")) mod = som.loadModel(components=("unit","weights")) mod.makeUMatrix() data = loadSparseSeqsAsDense(inpFile=os.path.join(options.testDataDir,"som/wd_2_0/all.svm")) mod.setSamples(data) print "Mapping samples..." mod.mapSamples(pmRadius=mod.paretoRadiusLenNormSamp) #mod.mapSamples(pmRadius=0.5) mod.makeUStarMatrix() pl.imshow(mod.pmat.T,aspect="equal",interpolation="nearest") pl.savefig("tmp.png") #mod.paretoRadius()
def getNCBINode(taxaTree,idSamp): return taxaTree.getNode(int(idSamp)) opt,args = getProgOptions() taxaTree = loadTaxaTreeNew() micNodes = [ taxaTree.getNode(id) for id in micTaxids ] #phageNode = taxaTree.getNode(phageTailedTaxid) virNode = taxaTree.getNode(virTaxid) if not os.path.isfile(opt.modDump): som = GHSOM(opt.inName) #SOMCode(opt.inName) mod = som.loadModel() samp = n.concatenate([ loadSparseSeqsAsDense(inSamp) for inSamp in opt.inSamp ]) mod.setSamples(samp) print "Mapping samples..." #mod.mapSamples(pmRadius=mod.paretoRadiusLenNormSamp) # Pareto radius is too large - U*-matrix is dominated by P-matrix mod.mapSamples(pmRadius=0.2) #0.2 #mod.mapSamples(pmRadius=None) mod.makeData() dumpObj(mod,opt.modDump) else: mod = loadObj(opt.modDump) mod.makeUStarMatrix() mod.makeUnit() #umat = mod.umat