Esempio n. 1
0
    def net_builder(self, train_dict):

        neval = velocity_verlet3.neval
        pwnet_list = []
        mbnet_list = []
        pw4mb_list = []
        output_dim = 2
        for n in range(neval):
            pwnet_list.append(
                mydevice.load(
                    pw_net(n + 2, output_dim, train_dict["pwnet_nnodes"])))
            mbnet_list.append(
                mydevice.load(
                    mb_net(12 * n + 24, output_dim,
                           train_dict["mbnet_nnodes"])))
        for n in range(neval // 2):
            pw4mb_list.append(
                mydevice.load(pw_net(2, output_dim,
                                     train_dict["pw4mb_nnodes"])))

        ngrids = train_dict["ngrids"]
        b = train_dict["b"]
        pw_obj = pw_ff(pwnet_list)
        mb_obj = mb_ff(mbnet_list, pw4mb_list, ngrids, b)

        mbpw_obj = mbpw(mb_obj, pw_obj)

        # concatenate all network for checkpoint
        net_list = pwnet_list + mbnet_list + pw4mb_list

        return mbpw_obj, net_list
Esempio n. 2
0
    def __init__(self, train_dict, loss_dict):

        self.train_dict = train_dict

        pwnet_input = 5  # for pw force function
        mbnet_input = 25  # for mb force function

        mode = train_dict["nn_mode"]

        if mode == 'hf':
            output_dim = 1
        else:
            output_dim = 2

        pwnet1 = mydevice.load(
            pw_net(pwnet_input, output_dim, train_dict["nnodes"]))
        pwnet2 = mydevice.load(
            pw_net(pwnet_input, output_dim, train_dict["nnodes"]))
        mbnet1 = mydevice.load(
            mb_net(mbnet_input, output_dim, train_dict["nnodes"]))
        mbnet2 = mydevice.load(
            mb_net(mbnet_input, output_dim, train_dict["nnodes"]))
        self.net_list = [pwnet1, pwnet2, mbnet1, mbnet2]

        print('pwnet1', pwnet1)
        print('pwnet2', pwnet2)
        print('mbnet1', mbnet1)
        print('mbnet2', mbnet2)

        if mode == 'hf':
            pwforce = pw_hf(pwnet1, pwnet2, train_dict["force_clip"])
            mbforce = mb_hf(mbnet1, mbnet2, train_dict["ngrids"],
                            train_dict["b"], train_dict["force_clip"])
        else:
            pwforce = pw_ff(pwnet1, pwnet2, train_dict["force_clip"])
            mbforce = mb_ff(mbnet1, mbnet2, train_dict["ngrids"],
                            train_dict["b"], train_dict["force_clip"])

        self.mbpwff = mbpw(mbforce, pwforce)

        param = itertools.chain(pwnet1.parameters(), pwnet2.parameters(),
                                mbnet1.parameters(), mbnet2.parameters())
        self.opt = optim.SGD(param, lr=train_dict["lr"])
        #sch = optim.lr_scheduler.StepLR(self.opt,train_dict["sch_step"],train_dict["sch_decay"])
        self.sch = DecayCosineAnnealingWarmRestarts(self.opt,
                                                    train_dict["sch_step"],
                                                    train_dict["sch_decay"])
        self.opta = optim.SGD(self.mbpwff.parameters(), train_dict["alpha_lr"])

        self.mlvv = velocity_verlet(self.mbpwff)

        lj = lennard_jones2d()
        self.loss_obj = loss(lj, loss_dict["eweight"],
                             loss_dict["polynomial_degree"])

        self.ckpt = checkpoint(self.net_list, self.mbpwff, self.opt, self.opta,
                               self.sch)
Esempio n. 3
0
        nnet(72, 2),
        nnet(84, 2)
    ]
    pw4mb_list = [nnet(2, 2), nnet(2, 2), nnet(2, 2)]

    for pw, mb in zip(pwnet_list, mbnet_list):
        pw = mydevice.load(pw)
        mb = mydevice.load(mb)
    for pw4mb in pw4mb_list:
        pw4mb = mydevice.load(pw4mb)

    mb = mb_ff(mbnet_list, pw4mb_list, ngrids, b, force_clip, nsamples,
               nparticles)
    pw = pw_ff(pwnet_list, force_clip, nsamples, nparticles)

    mbpw_obj = mbpw(mb, pw)
    vv3 = velocity_verlet3(mbpw_obj)

    lr = 1e-4
    opt = optim.SGD(mbpw_obj.parameters(), lr)
    opt2 = optim.SGD(mbpw_obj.tau_parameters(), lr * 1e-1)
    sch = torch.optim.lr_scheduler.StepLR(opt, step_size=1000, gamma=0.9)

    energy = potential_function()
    poly_deg = 2
    loss_obj = loss(energy, 0.0, poly_deg)

    nepoch = 100000
    for e in range(nepoch):

        data_id = np.random.randint(0, nbatches)