Esempio n. 1
0
    def testKMeans(self):
        data = DataRetriever("../Datasets/metadata.json")
        data.retrieveData("computerHardware")

        kValue = 15
        t = Timer()
        t.start()
        mediods = KMediods(data.getDataSet(), data.getDataClass(),
                           data.getDescreteAttributes(),
                           data.getContinuousAttributes(),
                           data.getPredictionType(), kValue, 100)

        t.stop()
        print(f"Time: {t}")
        print(mediods)
        mediods.to_csv('kmedoids.csv', index=False)
print(f"Creating CSV for {dataSetName}")
data.retrieveData(dataSetName)

maxItter = 100
kValue = 78

# These are only used for image segmentation and abalone
# frac = .25
# random_state = 69
# kValue = m.floor(frac * kValue)

dataSetUnNormalized = data.getDataSet()
# dataSetUnNormalized[data.getDataClass()] = np.log(dataSetUnNormalized[data.getDataClass()] + 0.001)  // This is for Forest Fires

sn = StandardNormalizer(dataSetUnNormalized[data.getContinuousAttributes()])
dataSetUnNormalized[data.getContinuousAttributes()] = sn.train_fit()

dataSetNormalized = dataSetUnNormalized

# dataSetNormalized = dataSetNormalized.sample(frac=frac, random_state=random_state)
# dataSetNormalized = dataSetNormalized.reset_index()

# dataSetNormalized = dataSetNormalized.drop(["idNumber"], axis=1) #// For Glass

medoids = KMediods(dataSetNormalized, data.getDataClass(),
                   data.getDescreteAttributes(),
                   data.getContinuousAttributes(), data.getPredictionType(),
                   kValue, maxItter)

medoids.to_csv('./CSVOutput/' + "normalized" + dataSetName +
Esempio n. 3
0
metrics = []
fold = 0


test_set = test_set.reset_index(drop=True)
train_set = train_set.reset_index(drop=True)
ohe = OneHotEncoder()
discrete_attr = dataRetriever.getDescreteAttributes()
if dataRetriever.getDataClass() in discrete_attr:
    discrete_attr.remove(dataRetriever.getDataClass())

train_set = ohe.train_fit(train_set, discrete_attr)
test_set = ohe.fit(test_set)

#  Normalize Data
sn = StandardNormalizer(train_set[dataRetriever.getContinuousAttributes()])
train_set[dataRetriever.getContinuousAttributes()] = sn.train_fit()
test_set[dataRetriever.getContinuousAttributes()] = sn.fit(test_set[dataRetriever.getContinuousAttributes()])

# Train network and change architecture in respect to data set
nn = NeuralNetwork(train_set, 2, [6,16], dataRetriever.getPredictionType(), dataRetriever.getDataClass())
fitness_matrix, average_fitness = nn._particle_swarm_optimize(70, max_iter=500)


predictions = nn._feed_forward(test_set.drop(dataRetriever.getDataClass(), axis=1), testing=True)

actual = test_set[dataRetriever.getDataClass()]
metrics = np.asarray(metrics)

fig, ax = plt.subplots(3)
ax[0].plot(fitness_matrix[:,0], label="1")
Esempio n. 4
0
def run_driver(current_data_set,
               mutation_rate=0.5,
               maxIter=1000,
               batch_size=0.6,
               population_size=110,
               network_architecture=[15],
               pb_actor=None):
    cost_func = {
        "breastCancer": "bin_cross",
        "glass": "log_cosh",
        "soybeanSmall": "log_cosh",
        "abalone": "log_cosh",
        "forestFires": "log_cosh",
        "computerHardware": "log_cosh"
    }

    title_text = r""" 
       ______                    __   _          ___     __                     _  __   __                    
      / ____/___   ____   ___   / /_ (_)_____   /   /   / /____ _ ____   _____ (_)/ /_ / /_   ____ ___   _____
     / / __ / _ \ / __ \ / _ \ / __// // ___/  / /| /  / // __ `// __ \ / ___// // __// __ \ / __ `__ \ / ___/
    / /_/ //  __// / / //  __// /_ / // /__   / ___ / / // /_/ // /_/ // /   / // /_ / / / // / / / / /(__  ) 
    \____/ \___//_/ /_/ \___/ \__//_/ \___/  /_/  |_//_/ \__, / \____//_/   /_/ \__//_/ /_//_/ /_/ /_//____/  
                                                        /____/                                                
    """

    output_json = {}

    # ====================== Adjustable Variables ==============================
    # current_data_set = "abalone"
    # mutation_rate = .5
    # maxIter = 10
    # batch_size = .6
    # population_size = 110

    # network_architecture = []
    # ===========================================================================

    output_json["parameters"] = {
        "mutation_rate": mutation_rate,
        "population_size": population_size,
        "network_architecture": network_architecture,
        "cost_func": cost_func[current_data_set],
        "maxIter": maxIter,
        "batch_size": batch_size
    }

    # ================ Data pre-processing =================================================
    dataRetriever = DataRetriever("../../Datasets/metadata.json")
    dataRetriever.retrieveData(current_data_set)
    dataset = dataRetriever.getDataSet().dropna()

    discrete_attr = dataRetriever.getDescreteAttributes()
    cont_attributes = dataRetriever.getContinuousAttributes()
    # This line is used to normalize the data for Forest Fires
    if current_data_set == "forestFires":
        discrete_attr.remove('month')
        discrete_attr.remove('day')
        dataset['month'] = (pd.to_datetime(dataset.month,
                                           format='%b').dt.month) - 1
        dataset["day"] = dataset['day'].apply(
            lambda x: list(calendar.day_abbr).index(x.capitalize()))
        dataset["month_sin"] = np.sin(dataset['month'])
        dataset["month_cos"] = np.sin(dataset['month'])

        dataset["day_sin"] = np.sin(dataset['day'])
        dataset["day_cos"] = np.sin(dataset['day'])
        dataset = dataset.drop('day', axis=1)
        dataset = dataset.drop('month', axis=1)
        cont_attributes.append('month_sin')
        cont_attributes.append('month_cos')
        cont_attributes.append('day_sin')
        cont_attributes.append('day_cos')

        dataset[dataRetriever.getDataClass()] = np.log(
            dataset[dataRetriever.getDataClass()] + 0.000001)
    elif current_data_set == "computerHardware":
        discrete_attr.remove('venderName')
        discrete_attr.remove('modelName')
        dataset = dataset.drop('venderName', axis=1)
        dataset = dataset.drop('modelName', axis=1)

    dataset = dataset.reset_index(drop=True)

    if dataRetriever.getDataClass() in discrete_attr:
        discrete_attr.remove(dataRetriever.getDataClass())

    # ======================= Train Neural Network ================
    print(title_text)
    fold = 0
    metrics = []

    for test_set, train_set in KFolds(dataset, 10):
        fold += 1
        fitness_file = f"../DataDump/GA/{current_data_set}_layer{len(network_architecture)}_fold{fold}_fitness.csv"
        output_file = f"../DataDump/GA/{current_data_set}_layer{len(network_architecture)}_fold{fold}_output.csv"

        metrics.append(
            multiprocess_func.remote(test_set,
                                     train_set,
                                     fold,
                                     fitness_file,
                                     output_file,
                                     dataRetriever,
                                     cost_func[current_data_set],
                                     current_data_set,
                                     mutation_rate,
                                     maxIter,
                                     batch_size,
                                     population_size,
                                     network_architecture,
                                     pb_actor=None))

    metrics = ray.get(metrics)
    print(metrics)
    print("Average Performance: ", np.asarray(metrics).mean())
    output_json["Metrics"] = metrics
    output_json["Average"] = np.asarray(metrics, dtype=np.float64).mean()
    output_json["Std"] = np.asarray(metrics, dtype=np.float64).std()

    with open(
            f"../DataDump/GA_{current_data_set}_layer{len(network_architecture)}.json",
            'w') as f:
        json.dump(output_json, f, indent=4)
Esempio n. 5
0
import numpy as np
import json

dataRetriever = DataRetriever("../Datasets/metadata.json")
dataRetriever.retrieveData("vote")
data = dataRetriever.getDataSet()
data = data.dropna()
data = data.sample(frac=1.0, random_state=93)
data = data.reset_index(drop=True)
# data = data.drop('idNumber', axis=1)

class_col = dataRetriever.getDataClass()
# data[class_col] = np.log(data[class_col] + 0.001)

contAttr = dataRetriever.getContinuousAttributes()
discAttr = dataRetriever.getDescreteAttributes()
predictionType = dataRetriever.getPredictionType()

output_json = {}
iter_num = 0

for test, train in KFolds(data, 5, stratisfied=True, class_col=class_col):

    #KFolds doesn't have the capability of returning a validate set
    #K is set to desired k/2 and the validate set is half of the test set

    sn = StandardNormalizer(train[contAttr])
    train[contAttr] = sn.train_fit()

    test1 = test.sample(frac=0.5, random_state=13)
Esempio n. 6
0
def network_tuner(*nodes_per_hidden_layer):
    """
    This function is used to calcuate the optimal network architecture
    The user should input the dataset they would like to operate with and change the performance metric in accordance to the data set type IE regression or classification 

    """
    
    MSEs = []

    bestNetwork = {}
    learning_rate = 0.0001
    maxItter = 500
    batch_size = .5

    dataRetriever = DataRetriever("../Datasets/metadata.json")
    dataRetriever.retrieveData("glass")
    dataset = dataRetriever.getDataSet().dropna()


    dataset = dataset.reset_index(drop=True)

    # This line is used to normalize the data for Forest Fires
    # dataset[dataRetriever.getDataClass()] = np.log(dataset[dataRetriever.getDataClass()]+0.1)

    dataset[dataRetriever.getContinuousAttributes()] = (dataset[dataRetriever.getContinuousAttributes()]-dataset[dataRetriever.getContinuousAttributes()].mean())/dataset[dataRetriever.getContinuousAttributes()].std()

    test_set = dataset.sample(frac=0.1, random_state=69)
    train_set = dataset.drop(test_set.index)
    test_set = test_set.reset_index(drop=True)
    train_set = train_set.reset_index(drop=True)

    ohe = OneHotEncoder()
    discrete_attr = dataRetriever.getDescreteAttributes()
    if dataRetriever.getDataClass() in discrete_attr:
        discrete_attr.remove(dataRetriever.getDataClass())

    datasetEncoded = ohe.train_fit(train_set, dataRetriever.getDescreteAttributes())
    testEncoded = ohe.fit(test_set)


    output = None
    nn = NeuralNetwork(datasetEncoded, 0, [], dataRetriever.getPredictionType(), dataRetriever.getDataClass())
    for i in range(maxItter):
        # We don't call an inital feedforward because backpropagate starts with a feedforward call
        # batch_size represents the number of data points per batch
        output = nn._back_propagate(learning_rate=learning_rate, batch_size=batch_size)


    final = nn.test(testEncoded.drop(dataRetriever.getDataClass(), axis=1))
    output = nn._feed_forward(testEncoded.drop(dataRetriever.getDataClass(), axis=1), testing=True)
    actual = testEncoded[dataRetriever.getDataClass()]


    ## ===================== Classification =================
    correct = 0
    acc = 0
    for i, row in enumerate(final):
        if row == actual.iloc[i]: correct += 1


    # final = final.reshape(final.shape[0])

    # MSE = ((actual-final)**2).mean()
    # MSEs.append(MSE)
    bestNetwork['network'] = nn
    bestNetwork['acc'] = acc
    bestNetwork['arc'] = [0]
    # # ============================================

    # # ============ Compare Acc to Most Common Class

    values = test_set[dataRetriever.getDataClass()].value_counts()


    # USED FOR CLASSIFICATION
    # print(f'Accuracy: {acc}')
    # print(f'Max Class Prior: {values.max()/values.sum()}')
    # print(f"Class Distribution:\n{values}")
    # print("Final: ", final)
    # print("Actual: ", list(actual))
    # print()



    numOfLayer = len(nodes_per_hidden_layer)
    print("Number of Hidden Layers: ", numOfLayer)
    for layer in range(numOfLayer):
        print(f"Layer Number: {layer + 1}")
        combinations = list(itertools.product(*nodes_per_hidden_layer[:layer+1]))

        for combo in combinations:

            output = None
            print("Node Combination: ",list(combo))
            print(combo)

            nn = NeuralNetwork(datasetEncoded, layer, list(combo), dataRetriever.getPredictionType(), dataRetriever.getDataClass())
            for i in range(maxItter):
                # We don't call an inital feedforward because backpropagate starts with a feedforward call
                # batch_size represents the number of data points per batch
                output = nn._back_propagate(learning_rate=learning_rate, batch_size=batch_size)

            final = nn.test(testEncoded.drop(dataRetriever.getDataClass(), axis=1))
            output = nn._feed_forward(testEncoded.drop(dataRetriever.getDataClass(), axis=1), testing=True)
            actual = testEncoded[dataRetriever.getDataClass()]

            ## ===================== Classification =================
            correct = 0
            acc = 0
            for i, row in enumerate(final):
                if row == actual.iloc[i]: correct += 1

            acc = correct/len(test_set)
            # # # ============================================

            # # # ============ Compare Acc to Most Common Class

            values = test_set[dataRetriever.getDataClass()].value_counts()

            # USED FOR CLASSIFICATION
            # print(f'Accuracy: {acc}')
            # print(f'Max Class Prior: {values.max()/values.sum()}')
            # # print(f"Class Distribution:\n{values}")
            # print("Final: ", final)
            # print("Actual: ", list(actual))
            # print()

            if acc > bestNetwork['acc']:
                bestNetwork['network'] = nn
                bestNetwork['acc'] = acc
                bestNetwork['arc'] = combo

            # final = final.reshape(final.shape[0])

            # MSE = ((actual-final)**2).mean()
            # MSEs.append(MSE)
            # if MSE < bestNetwork['acc']:
            #     bestNetwork['network'] = nn
            #     bestNetwork['acc'] = MSE
            #     bestNetwork['arc'] = combo

            



    return bestNetwork#, MSEs
Esempio n. 7
0
    dataRetriever.retrieveData(dataSet)
    dataClass = dataRetriever.getDataClass()
    retrievedData = dataRetriever.getDataSet()

    numOfClassValues = len(
        retrievedData[dataRetriever.getDataClass()].unique())
    method = "macro"
    foldNum = 1

    jsonResults1[dataSet] = {}

    print(f"PRINTING RESULTS FOR THE CONTROL DATASET {dataSet}")
    for train, test in KFolds(retrievedData, 10):

        trainBin = BinDiscretizer(
            train[dataRetriever.getContinuousAttributes()], multi=True)

        trainBin.train_multi()
        train[dataRetriever.getContinuousAttributes()] = trainBin.fit_multi(
            train[dataRetriever.getContinuousAttributes()])
        test[dataRetriever.getContinuousAttributes()] = trainBin.fit_multi(
            test[dataRetriever.getContinuousAttributes()])

        naiveBayes = NaiveBayes(train, dataClass)

        answers = test[dataClass].to_numpy()[:]
        test = test.drop(columns=dataClass)
        predictions = naiveBayes.test(test)

        classifierAnalyzer = ClassifierAnalyzer(answers, predictions)
Esempio n. 8
0
# ====================== Adjustable Variables ==============================
current_data_set = "soybeanSmall"
mutation_rate = .5
maxItter = 1000
batch_size = .6
population_size = 110
# ===========================================================================

# ================ Data pre-processing =================================================
dataRetriever = DataRetriever("../Datasets/metadata.json")
dataRetriever.retrieveData(current_data_set)
dataset = dataRetriever.getDataSet().dropna()

discrete_attr = dataRetriever.getDescreteAttributes()
cont_attributes = dataRetriever.getContinuousAttributes()
# This line is used to normalize the data for Forest Fires
if current_data_set == "forestFires":
    zeros = dataset[dataset[dataRetriever.getDataClass()] < 1].index
    print(len(zeros) / len(dataset))
    dataset = dataset.drop(zeros)
    discrete_attr.remove('month')
    discrete_attr.remove('day')

    dataset['month'] = (pd.to_datetime(dataset.month,
                                       format='%b').dt.month) - 1
    dataset["day"] = dataset['day'].apply(
        lambda x: list(calendar.day_abbr).index(x.capitalize()))
    dataset["month_sin"] = np.sin(dataset['month'])
    dataset["month_cos"] = np.sin(dataset['month'])
Esempio n. 9
0
current_data_set = "glass"
mutation_rate = .3
cross_over_prob = .7
maxItter = 1000
batch_size = .1
population_size = 100
nodes_per_layer = [5, 9]
# ===========================================================================

# ================ Data pre-processing =================================================
dataRetriever = DataRetriever("../Datasets/metadata.json")
dataRetriever.retrieveData(current_data_set)
dataset = dataRetriever.getDataSet().dropna()

discrete_attr = dataRetriever.getDescreteAttributes()
cont_attributes = dataRetriever.getContinuousAttributes()

# This line is used to normalize the data for Forest Fires
if current_data_set == "forestFires":
    discrete_attr.remove('month')
    discrete_attr.remove('day')
    dataset['month'] = (pd.to_datetime(dataset.month,
                                       format='%b').dt.month) - 1
    dataset["day"] = dataset['day'].apply(
        lambda x: list(calendar.day_abbr).index(x.capitalize()))
    dataset["month_sin"] = np.sin(dataset['month'])
    dataset["month_cos"] = np.sin(dataset['month'])

    dataset["day_sin"] = np.sin(dataset['day'])
    dataset["day_cos"] = np.sin(dataset['day'])
    dataset = dataset.drop('day', axis=1)