Esempio n. 1
0
 def __init__(self, in_size, out_size, **kwargs):
     self.in_size    = in_size
     self.out_size   = out_size
     if "statsHandler" in kwargs:
         self.statsHandler = kwargs["statsHandler"]
     else:
         self.statsHandler = StatsHandler()
Esempio n. 2
0
 def __init__(self,
              out_size,
              in_out_table: Dict,
              null_output=None,
              **kwargs):
     super().__init__(0, out_size, **kwargs)
     self.in_out_table = in_out_table
     self.null_output = null_output if null_output is not None else numpy.zeros(
         out_size)
     if "statsHandler" in kwargs:
         self.statsHandler = kwargs["statsHandler"]
     else:
         self.statsHandler = StatsHandler()
Esempio n. 3
0
import sys

import numpy
import matplotlib.pyplot as plt

from MLLibrary.Models.MatrixNet import MatrixNet
from MLLibrary.Models.SequenceNet import SequenceNet
from MLLibrary.StatsHandler import StatsHandler

I = 2
O = 1

statsHandler = StatsHandler()
NET = SequenceNet([MatrixNet(I,
                             I), MatrixNet(I, O)],statsHandler=statsHandler)
MAX_ITER = 1000000
BATCH = 100
LEARNING_RATIO = 0.01


def get_X():
    index = 1
    while True:
        index += 1
        numpy.random.seed(index)
        yield [[numpy.random.choice([0.0, 1.0]), numpy.random.choice([0.0, 1.0])]]


def get_Y():
    index = 1
    while True:
Esempio n. 4
0
import sys

import numpy
import matplotlib.pyplot as plt

from MLLibrary.Models.MatrixNet import MatrixNet
from MLLibrary.Models.SequenceNet import SequenceNet
from MLLibrary.StatsHandler import StatsHandler

I = 2
O = 1

statsHandler = StatsHandler()
NET = SequenceNet([MatrixNet(I, I), MatrixNet(I, O)],
                  statsHandler=statsHandler)
MAX_ITER = 1000000
BATCH = 50
LEARNING_RATIO = 0.1


def get_X():
    index = 1
    while True:
        index += 1
        numpy.random.seed(index)
        yield [[
            numpy.random.choice([0.0, 1.0]),
            numpy.random.choice([0.0, 1.0])
        ]]