def working_PCA(): #Read data MLobj = EasyClassi() MLobj.read("wine.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.split_ds() MLobj.scale_features(scaleY=False) #Applyinh PCA from sklearn.decomposition import PCA pca = PCA(n_components=2) MLobj.X_train = pca.fit_transform(MLobj.X_train) MLobj.X_test = pca.transform(MLobj.X_test) explained_variance = pca.explained_variance_ratio_ #Classification MLobj.fitLog() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() MLobj.printModelPerformance() #Visualize data #MLobj.visualize_lineal_2D_class(MLobj.X_train,MLobj.y_train,x1="PC1",x2="PC2",classNum=3) MLobj.visualize_lineal_2D_class(x1="PC1", x2="PC2", classNum=3)
def working_kernel_PCA_easy(): #Read data MLobj = EasyClassi() MLobj.read("Social_Network_Ads.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.X = MLobj.X[:, 2:4] MLobj.split_ds() MLobj.scale_features(scaleY=False) #Applyinh Kernel PCA MLobj.applyKernelPCA() #Classification MLobj.fitLog() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() MLobj.printModelPerformance() #Visualize data #MLobj.visualize_lineal_2D_class(MLobj.X_train,MLobj.y_train,x1="KPC1",x2="KPC2") MLobj.visualize_lineal_2D_class(x1="KPC1", x2="KPC2")
def working_PCA_easy(): #Read data MLobj = EasyClassi() MLobj.read("wine.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.split_ds() MLobj.scale_features(scaleY=False) #Applyinh PCA MLobj.applyPCA() PCAratio = MLobj.getPCAVarianceRatio() #Classification MLobj.fitLog() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() MLobj.printModelPerformance() #Visualize data #MLobj.visualize_lineal_2D_class(MLobj.X_train,MLobj.y_train,x1="PC1",x2="PC2",classNum=3) MLobj.visualize_lineal_2D_class(x1="PC1", x2="PC2", classNum=3)
def working_class_log_easy(): #Read data MLobj = EasyClassi() MLobj.read("Social_Network_Ads.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.X = MLobj.X[:, 2:4] MLobj.split_ds(test_set=1 / 4) MLobj.scale_features(scaleY=False) #Classification MLobj.fitLog() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() #Visualize data #MLobj.visualize_lineal_2D_class(MLobj.X_train,MLobj.y_train) MLobj.visualize_lineal_2D_class()