Esempio n. 1
0
    def _xval_model_error(self, fit_spectra, reject_outliers, fit_lb, fit_ub,
                          fitter, func):
        """
        Helper function for calculation of split-half cross-validation model
        error and signal reliability.

        """
        set1 = fit_spectra[::2]
        set2 = fit_spectra[1::2]
        errs = []
        signal_select = []
        models = []
        signals = []
        for this_set in [set1, set2]:
            choose_transients, model, signal, params, this_idx =\
                self._fit_helper(this_set, reject_outliers,
                                 fit_lb, fit_ub, fitter)
            models.append(np.nanmean(model[choose_transients], 0))
            signals.append(np.nanmean(signal[choose_transients], 0))

            signal_select.append(signal[choose_transients])

        #Cross-validation error estimation:
        model_err = np.mean(
            [ut.rmse(models[0], signals[1]),
             ut.rmse(models[1], signals[0])])
        # Also for the signal:
        signal_err = ut.rmse(np.nanmean(signal_select[0], 0),
                             np.nanmean(signal_select[1], 0))
        # Based on the errors, choose a function. Also report errors:
        return model_err, signal_err
Esempio n. 2
0
    def _xval_choose_funcs(self, fit_spectra, reject_outliers, fit_lb, fit_ub,
                           fitters=[ana.fit_gaussian,ana.fit_two_gaussian],
                           funcs = [ut.gaussian, ut.two_gaussian]):
        """ Helper function used to do split-half xvalidation to select among
            alternative models"""

        set1 = fit_spectra[::2]
        set2 = fit_spectra[1::2]

        errs = []
        signal_select = [] 
        # We can loop over functions and try each one out, checking the
        # error in each:
        for fitter in fitters:
            models = []
            signals = []
            for this_set in [set1, set2]:
                choose_transients, model, signal, params, this_idx =\
                    self._fit_helper(this_set, reject_outliers,
                                    fit_lb, fit_ub, fitter)
                models.append(np.nanmean(model[choose_transients], 0))
                signals.append(np.nanmean(signal[choose_transients], 0))

                signal_select.append(signal[choose_transients])
                
            #Cross-validate!
            errs.append(np.mean([ut.rmse(models[0], signals[1]),
                                 ut.rmse(models[1], signals[0])]))
        # We really only need to look at the first two:
        signal_err = ut.rmse(np.nanmean(signal_select[0], 0),
                             np.nanmean(signal_select[1], 0))
        # Based on the errors, choose a function. Also report errors:
        return (fitters[np.argmin(errs)], funcs[np.argmin(errs)], np.min(errs),
                signal_err)
Esempio n. 3
0
    def _xval_model_error(self, fit_spectra, reject_outliers, fit_lb, fit_ub,
                           fitter, func):
        """
        Helper function for calculation of split-half cross-validation model
        error and signal reliability.

        """
        set1 = fit_spectra[::2]
        set2 = fit_spectra[1::2]
        errs = []
        signal_select = [] 
        models = []
        signals = []
        for this_set in [set1, set2]:
            choose_transients, model, signal, params, this_idx =\
                self._fit_helper(this_set, reject_outliers,
                                 fit_lb, fit_ub, fitter)
            models.append(np.nanmean(model[choose_transients], 0))
            signals.append(np.nanmean(signal[choose_transients], 0))

            signal_select.append(signal[choose_transients])
                
        #Cross-validation error estimation:
        model_err = np.mean([ut.rmse(models[0], signals[1]),
                              ut.rmse(models[1], signals[0])])
        # Also for the signal:
        signal_err = ut.rmse(np.nanmean(signal_select[0], 0),
                             np.nanmean(signal_select[1], 0))
        # Based on the errors, choose a function. Also report errors:
        return model_err, signal_err
Esempio n. 4
0
    def _xval_choose_funcs(self, fit_spectra, reject_outliers, fit_lb, fit_ub,
                           fitters=[ana.fit_gaussian,ana.fit_two_gaussian],
                           funcs = [ut.gaussian, ut.two_gaussian]):
        """ Helper function used to do split-half xvalidation to select among
            alternative models"""

        set1 = fit_spectra[::2]
        set2 = fit_spectra[1::2]

        errs = []
        signal_select = [] 
        # We can loop over functions and try each one out, checking the
        # error in each:
        for fitter in fitters:
            models = []
            signals = []
            for this_set in [set1, set2]:
                choose_transients, model, signal, params, this_idx =\
                    self._fit_helper(this_set, reject_outliers,
                                    fit_lb, fit_ub, fitter)
                models.append(np.nanmean(model[choose_transients], 0))
                signals.append(np.nanmean(signal[choose_transients], 0))

                signal_select.append(signal[choose_transients])
                
            #Cross-validate!
            errs.append(np.mean([ut.rmse(models[0], signals[1]),
                                 ut.rmse(models[1], signals[0])]))
        # We really only need to look at the first two:
        signal_err = ut.rmse(np.nanmean(signal_select[0], 0),
                             np.nanmean(signal_select[1], 0))
        # Based on the errors, choose a function. Also report errors:
        return (fitters[np.argmin(errs)], funcs[np.argmin(errs)], np.min(errs),
                signal_err)