Esempio n. 1
0
def test_covariance_deriv():
    # now test full:
    # do covariant derivatives
    # check that it works, preseving everything
    dvec = np.array([10, 3, 2, 3])
    p = dvec.shape[0] - 1
    alpha = randint(1, 10, (p, p + 1)) * .1
    man = ComplexFlag(dvec, alpha=alpha)
    n = man.n
    d = man.d
    Y = man.rand()

    slp = np.random.randn(n * d)
    aa = np.random.randn(n * d, n * d)

    def omg_func(Y):
        return (aa @ Y.reshape(-1) + slp).reshape(n, d)

    xi = man.randvec(Y)

    egrad = omg_func(Y)
    ehess = (aa @ xi.reshape(-1)).reshape(n, d)

    val1 = man.ehess2rhess(Y, egrad, ehess, xi)

    def rgrad_func(W):
        return man.proj_g_inv(W, omg_func(W))

    if False:
        d_xi_rgrad = num_deriv(man, Y, xi, rgrad_func)
        rgrad = man.proj_g_inv(Y, egrad)
        fourth = man.christoffel_form(Y, xi, rgrad)
        val1c = man.proj(Y, d_xi_rgrad) + man.proj_g_inv(Y, fourth)

    if False:
        first = ehess
        a = man.J(Y, man.g_inv(Y, egrad))
        rgrad = man.proj_g_inv(Y, egrad)
        second = -man.D_g(Y, xi, man.g_inv(Y, egrad))
        aout = man.solve_J_g_inv_Jst(Y, a)
        third = -man.proj(Y, man.D_g_inv_Jst(Y, xi, aout))
        fourth = man.christoffel_form(Y, xi, rgrad)
        val1a = man.proj_g_inv(Y, first + second + fourth) + third

    d_xi_rgrad = num_deriv(man, Y, xi, rgrad_func)
    rgrad = man.proj_g_inv(Y, egrad)
    fourth = man.christoffel_form(Y, xi, rgrad)
    val1b = man.proj(Y, d_xi_rgrad) + man.proj_g_inv(Y, fourth)
    print(check_zero(val1 - val1b))
    # nabla_v_xi, dxi, cxxi
    # val2a, _, _ = calc_covar_numeric(man, Y, xi, omg_func)
    val2, _, _ = calc_covar_numeric(man, Y, xi, rgrad_func)
    # val2_p = project(prj, val2)
    val2_p = man.proj(Y, val2)
    # print(val1)
    # print(val2_p)
    print(check_zero(val1 - val2_p))
Esempio n. 2
0
def test_rhess_02():
    np.random.seed(0)
    dvec = np.array([10, 3, 2, 3])
    p = dvec.shape[0] - 1
    alpha = randint(1, 10, (p, p + 1)) * .1
    man = ComplexFlag(dvec, alpha=alpha)
    n = man.n
    d = man.d

    Y = man.rand()
    UU = {}
    p = alpha.shape[0]
    VV = {}
    gidx = man._g_idx

    for rr in range(p):
        UU[rr] = make_sym_pos(n)
        VV[rr] = crandn(n, dvec[rr + 1])

    def f(Y):
        ss = 0
        for rr in range(p):
            br, er = gidx[rr + 1]
            wr = Y[:, br:er]
            ss += trace(UU[rr] @ wr @ wr.T.conjugate()).real
        return ss

    def df(W):
        ret = np.zeros_like(W)
        for rr in range(p):
            br, er = gidx[rr + 1]
            wr = W[:, br:er]
            ret[:, br:er] += 2 * UU[rr] @ wr
        return ret

    def ehess_form(W, xi, eta):
        ss = 0
        for rr in range(p):
            br, er = gidx[rr + 1]
            ss += 2 * trace(
                UU[rr] @ xi[:, br:er] @ eta[:, br:er].T.conjugate()).real
        return ss

    def ehess_vec(W, xi):
        ret = np.zeros_like(W)
        for rr in range(p):
            br, er = gidx[rr + 1]
            ret[:, br:er] += 2 * UU[rr] @ xi[:, br:er]
        return ret

    xxi = crandn(n, d)
    dlt = 1e-8
    Ynew = Y + dlt * xxi
    d1 = (f(Ynew) - f(Y)) / dlt
    d2 = df(Y)
    print(d1 - trace(d2 @ xxi.T.conjugate()).real)

    eeta = crandn(n, d)

    d1 = trace((df(Ynew) - df(Y)) @ eeta.T.conjugate()).real / dlt
    ehess_val = ehess_form(Y, xxi, eeta)
    # ehess_val2 = ehess_form(Y, eeta, xxi)
    dv2 = ehess_vec(Y, xxi)
    print(trace(dv2 @ eeta.T.conjugate()).real)
    print(d1, ehess_val, d1 - ehess_val)

    # now check the formula: ehess = xi (eta_func(f)) - <D_xi eta, df(Y)>
    # promote eta to a vector field.

    m1 = crandn(n, n)
    m2 = crandn(d, d)

    def eta_field(Yin):
        return m1 @ (Yin - Y) @ m2 + eeta

    # xietaf: should go to ehess(xi, eta) + df(Y) @ etafield)
    xietaf = trace(
        df(Ynew) @ eta_field(Ynew).T.conjugate() -
        df(Y) @ eta_field(Y).T.conjugate()).real / dlt
    # appy eta_func to f: should go to tr(m1 @ xxi @ m2 @ df(Y).T.conjugate())
    Dxietaf = trace(
        (eta_field(Ynew) - eta_field(Y)) @ df(Y).T.conjugate()).real / dlt
    # this is ehess. should be same as d1 or ehess_val
    print(xietaf - Dxietaf)
    print(xietaf - Dxietaf - ehess_val)

    # now check: rhess. Need to make sure xi, eta in the tangent space.
    # first compare this with numerical differentiation
    xi1 = man.proj(Y, xxi)
    eta1 = man.proj(Y, eeta)
    egvec = df(Y)
    ehvec = ehess_vec(Y, xi1)
    rhessvec = man.ehess2rhess(Y, egvec, ehvec, xi1)

    # check it numerically:
    def rgrad_func(Y):
        return man.proj_g_inv(Y, df(Y))

    val2, _, _ = calc_covar_numeric(man, Y, xi1, rgrad_func)
    val2_p = man.proj(Y, val2)
    # print(rhessvec)
    # print(val2_p)
    print(check_zero(rhessvec - val2_p))
    rhessval = man.inner(Y, rhessvec, eta1)
    print(man.inner(Y, val2, eta1))
    print(rhessval)

    # check symmetric:
    ehvec_e = ehess_vec(Y, eta1)
    ehess_valp = ehess_form(Y, xi1, eta1)

    rhessvec_e = man.ehess2rhess(Y, egvec, ehvec_e, eta1)
    rhessval_e = man.inner(Y, rhessvec_e, xi1)
    rhessval_e1 = man.rhess02(Y, xi1, eta1, egvec, ehess_valp)
    # rhessval_e2 = man.rhess02_alt(Y, xi1, eta1, egvec,
    #                              trace([email protected]()).real)
    # print(rhessval_e, rhessval_e1, rhessval_e2)
    print(rhessval_e, rhessval_e1, rhessval_e - rhessval_e1)

    print('rhessval_e %f ' % rhessval_e)

    # the above computed inner_prod(Nabla_xi Pi * df, eta)
    # in the following check. Extend eta1 to eta_proj
    # (Pi Nabla_hat Pi g_inv df, g eta)
    # = D_xi (Pi g_inv df, g eta) - (Pi g_inv df g Pi Nabla_hat eta)

    def eta_proj(Y):
        return man.proj(Y, eta_field(Y))

    print(check_zero(eta1 - eta_proj(Y)))

    e1 = man.inner(Y, man.proj_g_inv(Y, df(Y)), eta_proj(Y))
    e1a = trace(df(Y) @ eta_proj(Y).T.conjugate()).real
    print(e1, e1a, e1 - e1a)
    Ynew = Y + xi1 * dlt
    e2 = man.inner(Ynew, man.proj_g_inv(Ynew, df(Ynew)), eta_proj(Ynew))
    e2a = trace(df(Ynew) @ eta_proj(Ynew).T.conjugate()).real
    print(e2, e2a, e2 - e2a)

    first = (e2 - e1) / dlt
    first1 = trace(
        df(Ynew) @ eta_proj(Ynew).T.conjugate() -
        df(Y) @ eta_proj(Y).T.conjugate()).real / dlt
    print(first - first1)

    val3, _, _ = calc_covar_numeric(man, Y, xi1, eta_proj)
    second = man.inner(Y, man.proj_g_inv(Y, df(Y)), man.proj(Y, val3))
    second2 = man.inner(Y, man.proj_g_inv(Y, df(Y)), val3)
    print(second, second2, second - second2)
    print('same as rhess_val %f' % (first - second))