Esempio n. 1
0
def main_segments(swc_matirx):
    neuron = Neuron(swc_matirx)
    branch_order = tree_util.branch_order(neuron.parent_index)
    distance_from_parent = neuron.distance_from_parent()
    main, parent_main_point, neural, euclidean = \
        neuron.get_neural_and_euclid_lenght_main_point(branch_order, distance_from_parent)
    branch_branch, branch_die, die_die, initial_with_branch = \
        neuron.branching_type(main, parent_main_point)
    ind_main = nodes_laying_toward_soma(
        neuron.parent_index, np.array(np.append(branch_die, die_die)))

    main_seg = np.zeros(len(neuron.parent_index))
    main_seg[ind_main] = 1
    return main_seg.astype(int)
Esempio n. 2
0
def cut_from_end_nodes(neuron, number):
    current_swc = rescale_neuron_in_unit_box(neuron)
    current_neuron = Neuron(input_file=current_swc,
                            input_format="Matrix of swc")
    current_swc = McNeuron.swc_util.get_swc_matrix(current_neuron)
    for i in range(current_neuron.n_node - number):
        row = np.random.choice(np.where(current_neuron.branch_order == 0)[0])
        current_swc = np.delete(current_swc, row, axis=0)
        higher_index = np.where(current_swc[:, 6] > row)[0]
        current_swc[higher_index, 6] = current_swc[higher_index, 6] - 1
        current_neuron = Neuron(input_file=current_swc,
                                input_format="Matrix of swc")
    current_swc = rescale_neuron_in_unit_box(current_neuron)
    current_neuron = Neuron(input_file=current_swc,
                            input_format="Matrix of swc")
    return current_neuron
Esempio n. 3
0
def generate_data(path, scale_depth, n_camrea, kappa):
    """
    input
    -----
    path : list
        list of all the pathes of swc. each element of the list should be a string.

    scale_depth : float in the interval [0,1]
        a value to differentiate between the background and gray level in the image.

    n_camera : int
        number of different angles to set the six images. For each angle, six images will be generated (up,down and four sides)

    kappa : float
        The width of the distribution that the angles come from. Large value for kappa results in the angles close to x aixs
        kappa = 1 is equvalent to the random angle.

    output
    ------
    Data : list of length
    """
    Data = []
    for i in range(len(path)):
        print(path[i])
        neuron = Neuron(file_format='swc without attributes',
                        input_file=path[i])
        if (len(neuron.nodes_list) != 0):
            for j in range(n_camrea):
                D = np.asarray(
                    make_six_images(neuron, scale_depth, np.array([i, j]),
                                    kappa))
                Data.append(D)
    return Data
Esempio n. 4
0
def extract_main_neuron_from_swc(matrix, num=300):
    a, b = np.unique(matrix[:, 6], return_counts=True)
    (I, ) = np.where(b == 2)
    branch_point = a[I]
    end_point = np.setxor1d(np.arange(0, matrix.shape[0]), matrix[4:, 6])
    I = np.union1d(branch_point, end_point)
    leng = matrix.shape[0]
    lengi = len(I)
    I = np.union1d(I, np.arange(0, n, int(n / (leng - lengi - 1))))
    random_point = np.setxor1d(np.arange(3, matrix.shape[0]), I)
    I = np.append(I, random_point[-(num - len(I)):-1])
    I = np.sort(I)
    I = np.array(I, dtype=int)
    I[0] = 0
    K = matrix[:, 6]
    K = np.array(K, dtype=int)
    J = parent_id_for_extract2(K, I)

    J = J + 1
    J[0] = -1
    n = len(J)

    I = I - 1
    I = I[1:]
    I = np.append(I, matrix.shape[0] - 1)
    new_matrix = np.zeros([n, 7])
    new_matrix[:, 0] = np.arange(0, n)
    new_matrix[:, 1] = matrix[I, 1]
    new_matrix[:, 2] = matrix[I, 2]
    new_matrix[:, 3] = matrix[I, 3]
    new_matrix[:, 4] = matrix[I, 4]
    new_matrix[:, 5] = matrix[I, 5]
    new_matrix[:, 6] = J
    neuron = Neuron(input_format='Matrix of swc', input_file=new_matrix)
    return neuron
Esempio n. 5
0
def neuron_with_selected_nodes(neuron, selected_index):
    """
    Giving back a new neuron made up with the selected_index nodes of self.
    if node A is parent (or grand parent) of node B in the original neuron,
    it is the same for the new neuron.

    Parameters
    ----------
    selected_index: numpy array
        the index of nodes from original neuron for making new neuron.

    Returns
    -------
    Neuron: the subsampled neuron.
    """
    parent = parent_id(neuron, selected_index)
    # making the list of nodes
    n_list = []
    for i in range(selected_index.shape[0]):
        n = Node()
        n.xyz = neuron.nodes_list[selected_index[i]].xyz
        n.r = neuron.nodes_list[selected_index[i]].r
        n.type = neuron.nodes_list[selected_index[i]].type
        n_list.append(n)
    # adjusting the childern and parents for the nodes.
    for i in np.arange(1, selected_index.shape[0]):
        j = parent[i]
        n_list[i].parent = n_list[j]
        n_list[j].add_child(n_list[i])
    return Neuron(file_format='only list of nodes', input_file=n_list)
Esempio n. 6
0
 def read_file(self, input_format, input_file):
     if (input_format == 'Matrix of swc'):
         self.index = np.array([])
         index = -1
         for neuron in input_file:
             try:
                 index += 1
                 m = subsample.fast_straigthen_subsample_swc(
                     neuron, self.len_subsampling)
                 n = Neuron(input_file=m)
                 n.set_features()
                 self.index = np.append(self.index, index)
                 self.database.append(n)
                 print(index)
             except:
                 print('ERROR IN:')
                 print(index)
Esempio n. 7
0
def prune_subsample(neuorn, number):
    main_point = subsample_main_nodes()
    Nodes = main_point.nodes_list
    rm = (main_point.n_node - number)/2.
    for remove in range(int(rm)):
        b, m = find_sharpest_fork(Nodes)
        remove_pair_adjust_parent(Nodes, b)

    return Neuron(file_format = 'only list of nodes', input_file = Nodes)
Esempio n. 8
0
def check_neuron(neuron):
    """
    Check the features of the neurons.

    Parameters:
    -----------
    neuron: Neuron
        The neuron to be checked.

    Returns:
    warnings if some features are not correct.
    """
    cor = 1
    n = Neuron(input_file=get_swc_matrix(neuron),
               input_format='Matrix of swc without Node class')
    n.fit()
    list_features = neuron.features.keys()
    for f in range(len(list_features)):
        # if list_features[f] == 'curvature':
        #     print(n.features[list_features[f]])
        #     print(neuron.features[list_features[f]])
        #     print(n.features[list_features[f]] - neuron.features[list_features[f]])
        if len(n.features[list_features[f]]) -  \
                len(neuron.features[list_features[f]]) != 0:
            print("The size of feature " + list_features[f] +
                  " is not calculated correctly.")
            cor = 0
        else:
            a = n.features[list_features[f]] - neuron.features[
                list_features[f]]
            if list_features[f] == 'branch_angle' or list_features[
                    f] == 'side_branch_angle':
                a = np.sort(n.features[list_features[f]], axis=0) - \
                    np.sort(neuron.features[list_features[f]], axis=0)
            a = a**2
            # if list_features[f] == 'curvature':
            #     print(n.features[list_features[f]])
            #     print(neuron.features[list_features[f]])
            #     print(a.sum())
            if (a.sum() > 0.):
                print("The feature " + list_features[f] +
                      " is not calculated correctly.")
                cor = 0
Esempio n. 9
0
def topological_depth(swc_matirx):
    neuron = Neuron(swc_matirx)
    branch_order = tree_util.branch_order(neuron.parent_index)
    distance_from_parent = neuron.distance_from_parent()
    main, parent_main_point, neural, euclidean = \
        neuron.get_neural_and_euclid_lenght_main_point(branch_order, distance_from_parent)

    reg_neuron = Neuron(subsample.regular_subsample(swc_matirx))
    topo_depth = np.zeros(swc_matirx.shape[0])
    depth_main = neuron_util.dendogram_depth(reg_neuron.parent_index)
    topo_depth[main] = depth_main
    for i in range(1, swc_matirx.shape[0]):
        b = True
        par = i
        while b:
            (index, ) = np.where(main == par)
            if len(index) != 0:
                topo_depth[i] = topo_depth[main[index]]
                b = False
            par = neuron.parent_index[par]
    return topo_depth
Esempio n. 10
0
def make_swc_from_prufer_and_locations(data):
    # the prufer code and the location are given.
    parents_code = np.array(decode_prufer(list(data['morphology'])))
    location = data['geometry']
    M = np.zeros([len(parents_code), 7])
    M[:, 0] = np.arange(1, len(parents_code)+1)
    M[0, 1] = 1
    M[1:, 1] = 2
    M[1:, 2:5] = location
    parents_code[1:] = parents_code[1:] + 1
    M[:, 6] = parents_code
    return Neuron(file_format='Matrix of swc', input_file=M)
Esempio n. 11
0
def mesoscale_subsample(neuron, number):
    main_point = subsample_main_nodes(neuron)
    Nodes = main_point.nodes_list
    rm = (main_point.n_node - number) / 2.
    for remove in range(int(rm)):
        b, m = find_sharpest_fork(neuron, Nodes)
        remove_pair_adjust_parent(neuron, Nodes, b)
    neuron = Neuron(input_format='only list of nodes', input_file=Nodes)

    if (neuron.n_node > number):
        (I, ) = np.where(neuron.branch_order == 0)
        neuron = remove_node(neuron, I[0])

    return neuron
Esempio n. 12
0
def swc_to_neuron(matrix):
    """
    Return the Neuron object from swc matrix.

    Parameters
    ----------
    matrix: numpy array
        numpy array of the size n_nodes*7.

    Return
    ------
    Neuron: Neuron
        a neuron obj with the given swc format.
    """
    return Neuron(file_format='Matrix of swc', input_file=matrix)
Esempio n. 13
0
def get_2d_image(path, size, dpi, background, show_width):

    neu = Neuron(file_format='swc without attributes', input_file=path)
    depth = neu.location[2, :]
    p = neu.location[0:2, :]
    widths = 5 * neu.diameter
    widths[0:3] = 0
    m = min(depth)
    M = max(depth)
    depth = background * ((depth - m) / (M - m))
    colors = []
    lines = []
    patches = []

    for i in range(neu.n_soma):
        x1 = neu.location[0, i]
        y1 = neu.location[1, i]
        r = 1 * neu.diameter[i]
        circle = Circle((x1, y1), r, color=str(depth[i]), ec='none', fc='none')
        patches.append(circle)

    pa = PatchCollection(patches, cmap=matplotlib.cm.gray)
    pa.set_array(depth[0] * np.zeros(neu.n_soma))

    for i in range(len(neu.nodes_list)):
        colors.append(str(depth[i]))
        j = neu.parent_index[i]
        lines.append([(p[0, i], p[1, i]), (p[0, j], p[1, j])])
    if (show_width):
        lc = mc.LineCollection(lines, colors=colors, linewidths=widths)
    else:
        lc = mc.LineCollection(lines, colors=colors)

    fig, ax = plt.subplots()
    ax.add_collection(lc)
    ax.add_collection(pa)
    fig.set_size_inches([size + 1, size + 1])
    fig.set_dpi(dpi)
    plt.axis('off')
    plt.xlim((min(p[0, :]), max(p[0, :])))
    plt.ylim((min(p[1, :]), max(p[1, :])))
    plt.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
    border = (dpi / 2)
    return np.squeeze(data[border:-border, border:-border, 0])
Esempio n. 14
0
def evolution_with_increasing_node(neuron):
    for i in range(10):
        m = neuron_util.get_swc_matrix(neuron)
        m = m[40 * i:, :]
        I = m[:, 6]
        I = I - 40 * i
        I[I < 0] = -1
        m[:, 6] = I
        n = Neuron(input_file=m,
                   input_format='Matrix of swc without Node class')
        lc = get_segment_collection(n)
        fig = plt.figure(figsize=(4, 4))
        fig, ax = plt.subplots()
        ax.add_collection(lc)
        plt.axis('off')
        plt.xlim((-6, 6))
        plt.ylim((-6, 6))
        #plt.draw()
        plt.show()
Esempio n. 15
0
    def read_file(self, input_format, input_file):
        if(input_format == 'Matrix of swc'):
            self.index = np.array([])
            index = -1
            for neuron in input_file:
                try:
                    index += 1
                    m = subsample.fast_straigthen_subsample_swc(neuron, self.len_subsampling)
                    n = Neuron(input_format=input_format, input_file=m)
                    n.fit()
                    self.index = np.append(self.index, index)
                    self.database.append(n)
                    print index
                except:
                    print('ERROR IN:')
                    print index

        if(input_format == 'Matrix of swc without Node class'):
            self.index = np.array([])
            index = -1
            for neuron in input_file:
                try:
                    index += 1
                    m = subsample.fast_straigthen_subsample_swc(neuron, self.len_subsampling)
                    n = Neuron(input_format=input_format, input_file=m)
                    self.index = np.append(self.index, index)
                    self.database.append(n)
                    print index
                except:
                    print('ERROR IN:')
                    print index

        if(input_format == 'swc'):
            for neuron in input_file:
                n = Neuron(input_format=input_format, input_file=neuron)
                purne_n, dis = subsample.straight_subsample_with_fixed_number(n, self.n_subsampling)
                self.database.append(purne_n)
Esempio n. 16
0
 def register_from_file(self, database):
     self.database = []
     for i in range(self.n):
         n = Neuron(file_format = 'swc', input_file = database[i])
         self.database.append(n)
Esempio n. 17
0
def star_neuron(wing_number=3,
                node_on_each_wings=4,
                spherical=False,
                length=10):
    """
    Make a star-wise neuron. The location of the root is origin.

    Parameters:
    wing_number: int
        The number of blades that the neuron should have
    node_on_each_wings: int
        The number of nodes on each warnings

    Return:
    -------
    neuron: Neuron
        The desire neuron
    """
    nodes_list = []
    root = Node()
    root.r = 1.
    root.node_type = 1
    root.xyz = np.array([0, 0, 0], dtype=float)
    nodes_list.append(root)

    for i in range(0):
        soma = Node()
        soma.r = .2
        soma.node_type = 1
        soma.xyz = np.array([0, 0, 0], dtype=float)
        nodes_list.append(soma)
        root.add_child(soma)
        soma.parent = root

    angle = 2 * np.pi / wing_number
    for j in range(wing_number):
        rand_vec = np.random.randn(3)
        rand_vec = rand_vec / np.sqrt(sum(rand_vec**2))
        for i in range(node_on_each_wings):
            node = Node()
            node.r = .2
            node.node_type = 2
            if spherical:
                x = rand_vec[0] * length * (i + 1)
                y = rand_vec[1] * length * (i + 1)
                z = rand_vec[2] * length * (i + 1)
            else:
                x = np.sin(j * angle) * length * (i + 1)
                y = np.cos(j * angle) * length * (i + 1)
                z = 0.
            node.xyz = np.array([x, y, z], dtype=float)  # +0*np.random.rand(3)
            if i == 0:
                root.add_child(node)
                node.parent = root
                nodes_list.append(node)
            else:
                nodes_list[-1:][0].add_child(node)
                node.parent = nodes_list[-1:][0]
                nodes_list.append(node)
    neuron = Neuron(input_format='only list of nodes', input_file=nodes_list)
    return neuron