def __init__(self,
                 num_features,
                 eps=1e-5,
                 momentum=0.99,
                 last_gamma=False,
                 D=-1):
        super(MinkowskiSwitchNorm, self).__init__()
        self.eps = eps
        self.momentum = momentum
        self.last_gamma = last_gamma
        self.weight = nn.Parameter(torch.ones(1, num_features))
        self.bias = nn.Parameter(torch.zeros(1, num_features))
        self.mean_weight = nn.Parameter(torch.ones(3))
        self.var_weight = nn.Parameter(torch.ones(3))
        self.register_buffer('running_mean', torch.zeros(1, num_features))
        self.register_buffer('running_var', torch.zeros(1, num_features))

        self.mean_in = MinkowskiGlobalPooling(dimension=D)
        self.glob_sum = MinkowskiBroadcastAddition(dimension=D)
        self.glob_sum2 = MinkowskiBroadcastAddition(dimension=D)
        self.glob_mean = MinkowskiGlobalPooling(dimension=D)
        self.glob_times = MinkowskiBroadcastMultiplication(dimension=D)
        self.D = D

        self.reset_parameters()
Esempio n. 2
0
  def __init__(self, num_features, eps=1e-5, D=-1):
    super(MinkowskiInstanceNorm, self).__init__()
    self.eps = eps
    self.weight = nn.Parameter(torch.ones(1, num_features))
    self.bias = nn.Parameter(torch.zeros(1, num_features))

    self.mean_in = MinkowskiGlobalPooling(dimension=D)
    self.glob_sum = MinkowskiBroadcastAddition(dimension=D)
    self.glob_sum2 = MinkowskiBroadcastAddition(dimension=D)
    self.glob_mean = MinkowskiGlobalPooling(dimension=D)
    self.glob_times = MinkowskiBroadcastMultiplication(dimension=D)
    self.D = D
    self.reset_parameters()
Esempio n. 3
0
    def test_broadcast(self):
        in_channels, D = 2, 2
        coords, feats, labels = data_loader(in_channels)
        coords, feats_glob, labels = data_loader(in_channels)
        feats = feats.double()
        feats_glob = feats_glob.double()
        input = SparseTensor(feats, coords=coords)
        pool = MinkowskiGlobalPooling(dimension=D)
        input_glob = pool(input)
        input_glob.F.requires_grad_()
        broadcast = MinkowskiBroadcastAddition(D)
        broadcast_mul = MinkowskiBroadcastMultiplication(D)
        output = broadcast(input, input_glob)
        print(output)
        output = broadcast_mul(input, input_glob)
        print(output)

        # Check backward
        fn = MinkowskiBroadcastFunction()

        self.assertTrue(
            gradcheck(
                fn,
                (input.F, input_glob.F, OperationType.ADDITION,
                 input.coords_key, input_glob.coords_key, input.coords_man)))

        self.assertTrue(
            gradcheck(
                fn,
                (input.F, input_glob.F, OperationType.MULTIPLICATION,
                 input.coords_key, input_glob.coords_key, input.coords_man)))
Esempio n. 4
0
    def test_broadcast_gpu(self):
        in_channels, D = 2, 2
        coords, feats, labels = data_loader(in_channels)
        coords, feats_glob, labels = data_loader(in_channels)
        feats = feats.double()
        feats_glob = feats_glob.double()
        input = SparseTensor(feats, coords=coords)
        pool = MinkowskiGlobalPooling()
        input_glob = pool(input)
        input_glob.F.requires_grad_()
        broadcast_add = MinkowskiBroadcastAddition()
        broadcast_mul = MinkowskiBroadcastMultiplication()
        broadcast_cat = MinkowskiBroadcastConcatenation()
        cpu_add = broadcast_add(input, input_glob)
        cpu_mul = broadcast_mul(input, input_glob)
        cpu_cat = broadcast_cat(input, input_glob)

        # Check backward
        fn = MinkowskiBroadcastFunction()

        device = torch.device('cuda')

        input = input.to(device)
        input_glob = input_glob.to(device)
        gpu_add = broadcast_add(input, input_glob)
        gpu_mul = broadcast_mul(input, input_glob)
        gpu_cat = broadcast_cat(input, input_glob)

        self.assertTrue(
            torch.prod(gpu_add.F.cpu() - cpu_add.F < 1e-5).item() == 1)
        self.assertTrue(
            torch.prod(gpu_mul.F.cpu() - cpu_mul.F < 1e-5).item() == 1)
        self.assertTrue(
            torch.prod(gpu_cat.F.cpu() - cpu_cat.F < 1e-5).item() == 1)

        self.assertTrue(
            gradcheck(
                fn,
                (input.F, input_glob.F, OperationType.ADDITION,
                 input.coords_key, input_glob.coords_key, input.coords_man)))

        self.assertTrue(
            gradcheck(
                fn,
                (input.F, input_glob.F, OperationType.MULTIPLICATION,
                 input.coords_key, input_glob.coords_key, input.coords_man)))
 def sparse_global_sum(self, x, y):
     return MinkowskiBroadcastAddition(dimension=self.D)(x, y)