Esempio n. 1
0
def quantize(coords):
    r"""Returns a unique index map and an inverse index map.

    Args:
        :attr:`coords` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a
        matrix of size :math:`N \times D` where :math:`N` is the number of
        points in the :math:`D` dimensional space.

    Returns:
        :attr:`unique_map` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a
        list of indices that defines unique coordinates.
        :attr:`coords[unique_map]` is the unique coordinates.

        :attr:`inverse_map` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a
        list of indices that defines the inverse map that recovers the original
        coordinates.  :attr:`coords[unique_map[inverse_map]] == coords`

    Example::

       >>> unique_map, inverse_map = quantize(coords)
       >>> unique_coords = coords[unique_map]
       >>> print(unique_coords[inverse_map] == coords)  # True, ..., True
       >>> print(coords[unique_map[inverse_map]] == coords)  # True, ..., True

    """
    assert isinstance(coords, np.ndarray) or isinstance(
        coords, torch.Tensor), "Invalid coords type"
    if isinstance(coords, np.ndarray):
        assert (coords.dtype == np.int32
                ), f"Invalid coords type {coords.dtype} != np.int32"
        return MEB.quantize_np(coords.astype(np.int32))
    else:
        # Type check done inside
        return MEB.quantize_th(coords.int())
Esempio n. 2
0
    def test_mapping(self):
        N = 16575
        coords = (np.random.rand(N, 3) * 100).astype(np.int32)
        mapping, inverse_mapping = MEB.quantize_np(coords)
        print("N unique:", len(mapping), "N:", N)
        self.assertTrue((coords == coords[mapping][inverse_mapping]).all())
        self.assertTrue((coords == coords[mapping[inverse_mapping]]).all())

        coords = torch.from_numpy(coords)
        mapping, inverse_mapping = MEB.quantize_th(coords)
        print("N unique:", len(mapping), "N:", N)
        self.assertTrue((coords == coords[mapping[inverse_mapping]]).all())

        unique_coords, index, reverse_index = sparse_quantize(
            coords, return_index=True, return_inverse=True)
        self.assertTrue((coords == coords[index[reverse_index]]).all())