elif dataset_name == 'test' or dataset_name == 'test_blur': loadpath_dict = basedir + "..\\datasets\\preprocessed_HIG\\dataset_dict_" + dataset_name + ".pickle" with open(loadpath_dict, 'rb') as f: dataset_load = pickle.load(f) ##--bag of fingertip position fingertip = {} fingertip['hpe1_orig'] = [] fingertip['hig_hpe1'] = [] fingertip['hpe2'] = [] fingertip['hpe1_blur'] = [] fingertip['average'] = [] #--start fusionnet.set_mode('eval') ir_batch = np.zeros((1, 1, args.trainImageSize, args.trainImageSize), dtype=np.float32) depth_batch = np.zeros((1, 1, args.trainImageSize, args.trainImageSize), dtype=np.float32) vis = Visualize_combined_outputs(utils, 4, 1, camerawidth, cameraheight) progressbar = trange(data_num, leave=True) for i in progressbar: #for i in range(data_num): frame = i ##--input if dataset_name == 'v1': depth_orig = cv2.imread( load_filepath_imgs + 'depth-%07d.png' % frame, 2)
f.write('traindataNum_VR20:%s\n' % traindataNum_vr20) f.write('validateNum_uvr:%s\n' % validateNum) f.close() #--start progress_train = progress.Progress(loss_names, pretrain=False) progress_validate = progress.Progress(loss_names, pretrain=False) iternum_train = traindataNum_uvr // args.train_batch iternum_train_blur = traindataNum_blur_uvr // args.train_batch iternum_vr20 = traindataNum_vr20 // args.train_batch print('start..') for epoch in range(args.epochs): #--train fusionnet.set_mode('train') datasetloader_uvr['train'].shuffle() generator_train_icvl = datasetloader_icvl.generator_learningData( args.train_batch, 'train', False, 0) #trange_num=traindataNum_uvr//args.train_batch + traindataNum_blur_uvr//args.train_batch +traindataNum_vr20//args.train_batch if traindataNum_vr20 > 0: trange_num = 2 * traindataNum_vr20 // args.train_batch else: trange_num = traindataNum_uvr // args.train_batch progressbar = trange(trange_num, leave=True) for i in progressbar: #select dataset