Esempio n. 1
0
def test_main():
    from get_ssa import get_ssa
    zenith = 53.1836240528
    AMass = 1.66450160404
    rel_h = 0.665
    pressure = 950
    AM = 5
    ssa = get_ssa(rel_h, AM)
    x = np.linspace(200, 800, 100)  # config
    variables = ['alpha', 'beta', 'g_dsa', 'g_dsr']  # config
    expected_values = [2.5, 0.06, 0.6, 0.5]
    print('Expected: %s' % expected_values)
    guess = [1.0, 0.01, 0.5, 0.8]  # config
    bounds = [(-0.2, 4), (0., 3), (0., 2.), (0., 2.)]  # config

    # Theano
    irr_symbol = IrradianceModel_sym(x, zenith, AMass, pressure, ssa, variables)
    getIrrRatio = irr_symbol.getcompiledModel('ratio')
    y_theano = getIrrRatio(*expected_values)
    res = Residuum(irr_symbol, 'ratio')
    residuum = FitWrapper(res.getResiduum())
    residuals = FitWrapper(res.getResiduals())
    derivative = FitWrapper(res.getDerivative())
    Fit = FitModel()
    result = Fit._minimize(residuum, guess, y_theano, bounds, jacobian=derivative)
    print("Got %s" % result.x)
    resultls = Fit._least_squares(residuals, guess, y_theano, bounds)
    print("Got %s" % resultls.x)


    # Python
    IrradianceObject = IrradianceModel_python(AMass, rel_h, ssa, zenith, pressure)
    y_python = IrradianceObject.irradiance_ratio(x, 2.5, 0.06,0.0, 0.6, 0.5)

    gmod = Model(IrradianceObject.irradiance_ratio, independent_vars=['x'], param_names=variables)
    gmod.set_param_hint('alpha', value=guess[0], min=bounds[0][0], max=bounds[0][1])
    gmod.set_param_hint('beta',  value=guess[1], min=bounds[1][0], max=bounds[1][1])
    gmod.set_param_hint('g_dsa', value=guess[2], min=bounds[2][0], max=bounds[2][1])
    gmod.set_param_hint('g_dsr', value=guess[3], min=bounds[3][0], max=bounds[3][1])

    result_lmfit = gmod.fit(y_python, x=x)
    print(result_lmfit.fit_report())

    plt.plot(x, y_theano)
    x_new = np.linspace(300, 900,150)
    irr_symbol.set_wavelengthAOI(x_new)
    getIrrRatio = irr_symbol.getcompiledModel('ratio')
    y_new = getIrrRatio(*expected_values)
    plt.plot(x_new, y_new, '+', label='different wavelengths')
    plt.legend()
    plt.show()
Esempio n. 2
0
def example():
    # possible values
    from get_ssa import get_ssa
    from Model import IrradianceModel

    zenith = 53.1836240528
    AMass = 1.66450160404
    rel_h = 0.665
    pressure = 950
    AM = 5
    ssa = get_ssa(rel_h, AM)
    iteration = 20
    alphas = np.zeros(len(range(1, iteration)) + 1)

    x = np.linspace(200, 800, 100)
    irr = IrradianceModel_python(AMass, rel_h, ssa, zenith, pressure)
    irr_symbol = IrradianceModel(x, zenith, AMass, pressure, ssa)

    func = irr_symbol._irradiance_ratio()

    y = irr.irradiance_ratio(x, 2.5, 0.06, 0.0, 1.0, 1.0)
    for i in range(0, iteration):
        ssa = get_ssa(rel_h, AM)
        print(ssa)
        irr = IrradianceModel_python(AMass, rel_h, ssa, zenith, pressure)
        yerror = np.random.normal(0, 0.009, len(x))
        y = irr.irradiance_ratio(x, 1.5, 0.06, 0.0, 0.6, 0.9) + yerror
        weights = 1 / yerror

        gmod = Model(irr.irradiance_ratio, independent_vars=["x"], param_names=["alpha", "beta", "g_dsa", "g_dsr"])

        gmod.set_param_hint("alpha", value=1.0, min=-0.2, max=2.5)
        gmod.set_param_hint("beta", value=0.01, min=0.0, max=2.0)
        gmod.set_param_hint("g_dsa", value=0.6, min=0.0, max=1.0)
        gmod.set_param_hint("g_dsr", value=0.9, min=0.0, max=1.0)
        print(gmod.param_hints)
        print(gmod.param_names)
        print(gmod.independent_vars)

        result = gmod.fit(y, x=x)
        print(result.fit_report())
        alphas[i] = result.params["alpha"].value

        # plt.plot(x, y, label='%s' % AM)
        # plt.plot(x, result.best_fit, 'r-', label='fit')
    y = irr.irradiance_ratio(x, 1.5, 0.06, 0.0, 0.6, 0.9)
    y2 = irr.irradiance_ratio(x, 1.5, 0.08, 0.0, 0.6, 0.9)

    plt.legend()
    plt.show()