import datetime
all_check_ins = train + test all_venues = [x["venue_id"] for x in all_check_ins] n_values = Counter(all_venues) coordinates = {} for venue in all_venues: latitude = np.median([ x["latitude"] for x in all_check_ins if x["venue_id"] == venue ]) longitude = np.median([ x["longitude"] for x in all_check_ins if x["venue_id"] == venue ]) coordinates[venue] = (latitude, longitude) model = NCGModel(n_values, coordinates) model.train(train, number_of_iterations=10) if model.parameters != None: correct = 0 for check_in in test: real_venue = check_in["venue_id"] time = check_in["date"] predicted_venue = model.predict(time, train + test) if real_venue == predicted_venue: correct += 1 results_radiation.append(float(correct) / len(test)) if user in network: social_model_stanford.fit_model(model, network[user], datasets) correct = 0