def prediksi_list(x): new_x = list() #print("Praproses ->") for ix, i in enumerate(x): new_x.append(pps.praposes(i)) if ix % 100 == 0 and ix != 0: print(ix, end=" ") else: print(".", end="") print("|") print("<<Masuk Proses Prediksi>>") hasil_prediksi_list = SVM.predict(tfidf.transform(new_x).toarray()) dixt = {"prediksi": list(hasil_prediksi_list), "komentar": new_x} return pd.DataFrame.from_dict(dixt) # def prediksi_SVM_list_nopps(x): # # new_x = list() # # #print("Praproses ->") # # for ix, i in enumerate(x): # # new_x.append(pps.praposes(i)) # # if ix%100==0 and ix != 0: # # print(ix, end=" ") # # else: # # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = SVM.predict(tfidf.transform(x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":x # } return pd.DataFrame.from_dict(dixt)
def prediksi(x, normalisasi = True): if type(x) is str: return CNB.predict(tfidf.transform([pps.praposes(x, normalisasi = normalisasi)]).toarray())[0] elif type(x) is list: new_x = list() #print("Praproses ->") for ix, i in enumerate(x): new_x.append(pps.praposes(i, normalisasi = normalisasi)) if ix%100==0 and ix != 0: print(ix, end=" ") else: print(".", end="") print("|") print("<<Masuk Proses Prediksi>>") hasil_prediksi_list = CNB.predict(tfidf.transform(new_x).toarray()) dixt = { "prediksi":list(hasil_prediksi_list), "komentar":new_x } return pd.DataFrame.from_dict(dixt) else: return "Masukan harus bertipe string atau list (array)"
def prediksi_list(x, normalisasi=True): new_x = list() #print("Praproses ->") for ix, i in enumerate(x): new_x.append(pps.praposes(i, normalisasi=normalisasi)) if ix % 100 == 0 and ix != 0: print(ix, end=" ") else: print(".", end="") print("|") print("<<Masuk Proses Prediksi>>") hasil_prediksi_list = GNB.predict(tfidf.transform(new_x).toarray()) dixt = {"prediksi": list(hasil_prediksi_list), "komentar": new_x} return pd.DataFrame.from_dict(dixt)
def score(x, y): if type(x) is list: new_x = list() #print("Praproses ->") for ix, i in enumerate(x): new_x.append(pps.praposes(i)) if ix%100==0 and ix != 0: print(ix, end=" ") else: print(".", end="") print("|") print("<<Masuk Proses Prediksi>>") hasil_prediksi_list = CNB.predict(tfidf.transform(new_x).toarray(), y) dixt = { "prediksi":list(hasil_prediksi_list), "komentar":new_x } return pd.DataFrame.from_dict(dixt) else: return "Inputan harus bertype list dan memiliki label"
def prediksi_single(x, normalisasi = True): return CNB.predict(tfidf.transform([pps.praposes(x, normalisasi = normalisasi)]).toarray())[0]
def save_kata (): pps.savek() # def prediksi_SVM_list_nopps(x): # # new_x = list() # # #print("Praproses ->") # # for ix, i in enumerate(x): # # new_x.append(pps.praposes(i)) # # if ix%100==0 and ix != 0: # # print(ix, end=" ") # # else: # # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = SVM.predict(tfidf.transform(x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":x # } # return pd.DataFrame.from_dict(dixt) # def prediksi_cnb_single(x): # return cnb.predict(tfidf_cnb.transform([pps.praposes(x)]).toarray())[0] # def prediksi_cnb_list(x): # new_x = list() # #print("Praproses ->") # for ix, i in enumerate(x): # new_x.append(pps.praposes(i)) # if ix%100==0 and ix != 0: # print(ix, end=" ") # else: # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = cnb.predict(tfidf.transform(new_x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":new_x # } # return pd.DataFrame.from_dict(dixt) # def prediksi2_single(x): # return SVM2.predict(tfidf2.transform([pps.praposes(x)]).toarray())[0] # def prediksi2_list(x): # new_x = list() # #print("Praproses ->") # for ix, i in enumerate(x): # new_x.append(pps.praposes(i)) # if ix%100==0 and ix != 0: # print(ix, end=" ") # else: # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = SVM2.predict(tfidf2.transform(new_x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":new_x # } # return pd.DataFrame.from_dict(dixt)
def prediksi_single(x): return GNB.predict(tfidf.transform([pps.praposes(x)]).toarray())[0]
def prediksi2_single(x): return SVM2.predict(tfidf2.transform([pps.praposes(x)]).toarray())[0]
def save_kata(): pps.savek()
def prediksi(x, normalisasi=True): if type(x) is str: return GNB.predict( tfidf.transform([pps.praposes(x, normalisasi=normalisasi) ]).toarray())[0] elif type(x) is list: new_x = list() #print("Praproses ->") for ix, i in enumerate(x): new_x.append(pps.praposes(i)) if ix % 100 == 0 and ix != 0: print(ix, end=" ") else: print(".", end="") print("|") print("<<Masuk Proses Prediksi>>") hasil_prediksi_list = GNB.predict(tfidf.transform(new_x).toarray()) dixt = {"prediksi": list(hasil_prediksi_list), "komentar": new_x} return pd.DataFrame.from_dict(dixt) else: return "Masukan harus bertipe string atau list (array)" # def prediksi_SVM_list_nopps(x): # # new_x = list() # # #print("Praproses ->") # # for ix, i in enumerate(x): # # new_x.append(pps.praposes(i)) # # if ix%100==0 and ix != 0: # # print(ix, end=" ") # # else: # # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = SVM.predict(tfidf.transform(x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":x # } # return pd.DataFrame.from_dict(dixt) # def prediksi_cnb_single(x): # return cnb.predict(tfidf_cnb.transform([pps.praposes(x)]).toarray())[0] # def prediksi_cnb_list(x): # new_x = list() # #print("Praproses ->") # for ix, i in enumerate(x): # new_x.append(pps.praposes(i)) # if ix%100==0 and ix != 0: # print(ix, end=" ") # else: # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = cnb.predict(tfidf.transform(new_x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":new_x # } # return pd.DataFrame.from_dict(dixt) # def prediksi2_single(x): # return SVM2.predict(tfidf2.transform([pps.praposes(x)]).toarray())[0] # def prediksi2_list(x): # new_x = list() # #print("Praproses ->") # for ix, i in enumerate(x): # new_x.append(pps.praposes(i)) # if ix%100==0 and ix != 0: # print(ix, end=" ") # else: # print(".", end="") # print("|") # print("<<Masuk Proses Prediksi>>") # hasil_prediksi_list = SVM2.predict(tfidf2.transform(new_x).toarray()) # dixt = { # "prediksi":list(hasil_prediksi_list), # "komentar":new_x # } # return pd.DataFrame.from_dict(dixt)