def test_do_fit(self): guess = dict(A0=0.25, Freq=0.55, Sigma=0.25, Phi=0.0) target = dict(A0=0.2, Freq=0.5, Sigma=0.2, Phi=0.0) do_a_fit(np.arange(0.1, 16, 0.2), 'GaussBessel', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, Radius=10.5, LambdaTrans=0.25) target = dict(A0=0.2, Radius=10, LambdaTrans=0.2) do_a_fit(np.arange(0.1, 16, 0.2), 'ZFelectronDipole', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, FreqA=0.35, FreqD=0.25, FCut=1.05, Phi=0.0) target = dict(A0=0.2, FreqA=0.3, FreqD=0.2, FCut=1.0, Phi=0.0) do_a_fit(np.arange(0.1, 16, 0.2), 'ZFMuonium', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, KTdelta=0.15, B0=11.0, Gauss=0.25) target = dict(A0=0.2, KTdelta=0.1, B0=10.0, Gauss=0.2) do_a_fit(np.arange(0.1, 16, 0.2), 'CompositePCRmagnet', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A=1.1, Lambda=0.15, N0=1.1, Tau=5.0, Phi=0.3, Nu=0.2) target = dict(A=1.0, Lambda=0.1, N0=1.0, Tau=5.0, Phi=0.3, Nu=0.2) do_a_fit(np.arange(0.1, 16, 0.2), 'MuMinusExpTF', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, Field=0.1, A=1.5, Phi=0.0) target = dict(A0=0.2, Field=0.1, A=1.5, Phi=0.0) do_a_fit(np.arange(0.1, 16, 0.2), 'LowTFMuonium', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, SigmaOverW=0.15, H0=3.0, Toff=0.15) target = dict(A0=0.2, SigmaOverW=0.1, H0=3.0, Toff=0.1) do_a_fit(np.arange(0.1, 16, 0.2), 'PCRmagnetfnorm', guess, target, atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, Delta=0.15, H0=10.0, Toff=0.15) target = dict(A0=0.2, Delta=0.1, H0=10.0, Toff=0.1) do_a_fit(np.arange(0.1, 16, 0.2), 'PCRmagnetZFKT', guess, target, atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'DampedBessel', guess=dict(A0=0.25, Field=10.5, Phi=0.05, LambdaL=0.15, LambdaT=0.15, FractionL=0.15), target=dict(A0=0.2, Field=10, Phi=0.0, LambdaL=0.1, LambdaT=0.1, FractionL=0.1), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'PEARLTransVoigt', guess=dict(Position=1096, LorentzianFWHM=45.5, GaussianFWHM=25.4, Bg0=25.2, Bg1=0.017, Bg2=0.0), target=dict(Position=1096.3, LorentzianFWHM=45.8, GaussianFWHM=25.227, Bg0=25.0, Bg1=0.015, Bg2=0.0), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'StandardSC', guess=dict(A0=0.5, FieldSC=10, FieldBG=11, Phi=0.05, Sigma=0.2, Abg=0.1), target=dict(A0=0.5, FieldSC=10, FieldBG=11, Phi=0.0, Sigma=0.2, Abg=0.1), atol=0.01)
def test_do_fit(self): target = dict(A=1.0, R=3.5, L=1.7) # we need only one parameter when fitting only one histogram, # else we incur in overfitting guesses = (dict(A=1.0, R=3.5, L=3.0), dict(A=1.0, R=0.5, L=1.7)) fixes = (['A', 'R'], ['A', 'L']) for (guess, fix) in zip(guesses, fixes): status, fit = do_a_fit(np.arange(0.1, 2.2, 0.2), 'EISFDiffCylinder', guess=guess, fixes=fix, target=target, atol=0.01) if not status: msg_p = 'param {} target value was {}, obtained = {}' msg = '\n'.join([msg_p.format(*[p, target[p], fit.Function[p]]) for p in target]) self.fail('\n'+msg)
def test_do_fit(self): target = dict(A=1.0, R=3.5, L=1.7) # we need only one parameter when fitting only one histogram, # else we incur in overfitting guesses = (dict(A=1.0, R=3.5, L=3.0), dict(A=1.0, R=0.5, L=1.7)) fixes = (['A', 'R'], ['A', 'L']) for (guess, fix) in zip(guesses, fixes): status, fit = do_a_fit(np.arange(0.1, 2.2, 0.2), 'EISFDiffCylinder', guess=guess, fixes=fix, target=target, atol=0.01) if not status: msg_p = 'param {} target value was {}, obtained = {}' msg = '\n'.join([ msg_p.format(*[p, target[p], fit.Function[p]]) for p in target ]) self.fail('\n' + msg)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'RFresonance', guess=dict(A0=0.25, Boffset=10.5, B1=10.5, B1GauWidth=0.25), target=dict(A0=0.2, Boffset=10, B1=10, B1GauWidth=0.2), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'TriangleOsc', guess=dict(A0=0.5, Freq=1, Phi=0.0), target=dict(A0=0.5, Freq=1, Phi=0.0), atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, Freq=1.15, ModFreq=0.15, Phi=0.0) target = dict(A0=0.2, Freq=1.0, ModFreq=0.1, Phi=0.0) do_a_fit(np.arange(0.1, 16, 0.2), 'ModOsc', guess, target, atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 2.2, 0.2), 'EISFDiffSphere', guess=dict(A=2.0, R=1.0), target=dict(A=1.0, R=3.5), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'StretchedKT', guess=dict(A0=0.55, Beta=1.5, Sigma=0.35), target=dict(A0=0.5, Beta=2, Sigma=0.3), atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, Delta=0.25, Nu=0.15) target = dict(A0=0.2, Delta=0.2, Nu=0.1) do_a_fit(np.arange(0.1, 16, 0.2), 'PCRmagRedfield', guess, target, atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'TFMuonium', guess=dict(A0=0.55, Field=5.5, A=605, Phi=0.0), target=dict(A0=0.5, Field=5, A=600, Phi=0.0), atol=0.01)
def test_do_fit(self): guess = dict(A0 = 0.25, Freq = 2.5, Angle = 50.5, Field = 11, Phi = 0.0) target = dict(A0 = 0.2, Freq = 2, Angle = 50, Field = 10, Phi = 0.0) do_a_fit(np.arange(0.1, 16, 0.2), 'AFMLF', guess, target, atol = 0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 2.2, 0.2), 'TeixeiraWater', guess=dict(Tau=2.0, L=1.0), target=dict(Tau=1.0, L=3.5), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'SilverBaseline', guess=dict(A0=0.15), target=dict(A0=0.1), atol=0.01)
def test_do_fit(self): guess = dict(A0=0.25, Freq=1.2, Angle=50, Sigma=10.5, Phi=0.0) target = dict(A0=0.2, Freq=1, Angle=50, Sigma=0.2, Phi=0.0) do_a_fit(np.arange(0.1, 16, 0.2), 'AFMZF', guess, target, atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'StaticLorentzianKT', guess=dict(A0=0.2, A=1.1, Field=0.9), target=dict(A0=0.2, A=1, Field=1), atol=0.01)
def test_do_fit(self): guess = dict(A0 = 0.25, R = 0.45, Delta0 = 0.25) target = dict(A0 = 0.2, R = 0.4, Delta0 = 0.2) do_a_fit(np.arange(0.1, 16, 0.2), 'GauBroadGauKT', guess, target, atol = 0.01)
def test_do_fit(): do_a_fit(np.asarray([0.01, 0.1, 1.0, 10.0]), 'ChudleyElliot', guess=dict(Tau=1.0, L=1.0), target=dict(Tau=1.42, L=2.42), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'FmuF', guess=dict(A0=0.55, FreqD=0.25, Lambda=0.15, Sigma=0.25), target=dict(A0=0.5, FreqD=0.2, Lambda=0.1, Sigma=0.2), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'Redfield', guess=dict(A0=0.2, Hloc=0.1, Tau=0.1), target=dict(A0=0.2, Hloc=0.1, Tau=0.1), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'Meier', guess = dict(A0 = 0.55, FreqD = 0.015, FreqQ = 0.055, Spin = 3.55, Lambda = 0.15, Sigma = 0.25), target = dict(A0 = 0.5, FreqD = 0.01, FreqQ = 0.05, Spin = 3.5, Lambda = 0.1, Sigma = 0.2), atol = 0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'SpinGlass', guess=dict(A0=0.25, Width=0.15, Nu=1.1, Q=0.15), target=dict(A0=0.2, Width=0.1, Nu=1, Q=0.1), atol=0.01)
def test_do_fit(self): do_a_fit(np.arange(0.1, 16, 0.2), 'CombGaussLorentzKT', guess=dict(A0=0.55, Lambda=0.15, Sigma=0.5), target=dict(A0=0.5, Lambda=0.1, Sigma=0.2), atol=0.01)
def test_do_a_fit(self): do_a_fit(np.arange(0.1, 2.2, 0.2), 'EISFDiffSphereAlkyl', guess=dict(A=2.0, Rmin=2.0, Rmax=3.0), target=dict(A=1.0, Rmin=0.5, Rmax=6.3), atol=0.01)