Esempio n. 1
0
def trans_mode(mode='normal'):
    global criterion
    global train_set
    global test_set
    if mode == 'one-hot':
        label_file = basic_dir + 'one-hot-label.csv'
        train_set = MusicDataThree(data_file,
                                   label_file,
                                   start=train_start,
                                   total=train_end)
        test_set = MusicDataThree(data_file,
                                  label_file,
                                  start=test_start,
                                  total=test_end)
        criterion = nn.CrossEntropyLoss()
Esempio n. 2
0
set_record_file('record-modeltest.txt')

print('Test of deep convolutional network')
data_dir = basic_dir + 'raw-data-v5/'
data_file = basic_dir + 'music-data-v5.csv'
label_file = basic_dir + 'labels-v5.csv'
# net_name = 'shallownet'
net_name = '0-justreducelr'
# net_name = 'simplecnn-freq'
model_name = net_name + '.pt'
net = Justreducelr_0()  # deep convolutional network
net.load_state_dict(torch.load(model_name))
net.eval()
# test_set = MusicDataThree(data_file=data_file, label_file=label_file, start=2560, total=3219)
test_set = MusicDataThree(data_file=data_file,
                          label_file=label_file,
                          start=2560,
                          total=3219)
test(net, net_name=net_name, dataset=test_set)

print('Test of shallow convolutional network')
data_file = basic_dir + 'music-data-v5.csv'
label_file = basic_dir + 'labels-v5.csv'
net = ShallowNet()
net_name = 'shallownet'
model_name = net_name + '.pt'
net.load_state_dict(torch.load(model_name))
net.eval()
test_set = MusicDataThree(data_file=data_file,
                          label_file=label_file,
                          start=2560,
                          total=3219)
Esempio n. 3
0
from train_test import train, test
from train_test import Ininorm_5_6 as Net
from MusicDataset import MusicDataThree, IniNorm

# time.sleep(3600*4)

print('start')
model_path = '6-5+ininorm.pt'

print('start')
model_path = '6-5+ininorm.pt'
tsfm = IniNorm()
train_set = MusicDataThree(transform=tsfm)
test_set = MusicDataThree(transform=tsfm)
net = Net()
net = train(net, model_path=model_path, dataset=train_set)
test(net, dataset=test_set)
Esempio n. 4
0
from train_test import train, test, set_record_file
from train_test import Coon_0_2 as Net
from MusicDataset import MusicDataThree, ExpNorm

# time.sleep(3600*4)

print('start')
set_record_file('record-expoon.txt')
net_name = '2-0+expcoon'
model_path = net_name + '.pt'
tsfm = ExpNorm()
train_set = MusicDataThree(transform=tsfm, start=0, total=1)
test_set = MusicDataThree(transform=tsfm, start=0, total=1)
net = Net()
net = train(net, model_path=model_path, dataset=train_set)
test(net, net_name, dataset=test_set)


Esempio n. 5
0
        return self.classifier(x).view(-1, 18)


def weights_init(m):
    if isinstance(m, nn.Conv2d):
        nn.init.normal_(m.weight.data, mean=0, std=10)
        nn.init.normal_(m.bias.data, mean=0, std=10)


net = Justreducelr_0()
net.apply(weights_init)

# criterion = nn.CrossEntropyLoss()
# criterion = nn.BCELoss()  # ##################################################### here
train_set = MusicDataThree(data_file,
                           label_file,
                           start=train_start,
                           total=train_end)
test_set = MusicDataThree(data_file,
                          label_file,
                          start=test_start,
                          total=test_end)
criterion = nn.BCEWithLogitsLoss()


def set_record_file(file_name):
    global record_file
    record_file = file_name


def trans_mode(mode='normal'):
    global criterion
Esempio n. 6
0
        second = F.relu(self.pool(self.conv3(second)))
        second = F.relu(self.pool(self.conv4(second)))
        # for i in range(3):
        #     second = F.relu(self.conv5(second))
        # second = self.conv6(second)
        second = second.view(batch_size, -1)
        y = self.sigmoid(first + second)
        return y


net = Coon_0_2()

# criterion = nn.BCELoss()  # ##################################################### here
train_set = MusicDataThree(data_file,
                           label_file,
                           start=train_start,
                           total=train_end,
                           mode='one-hot')
test_set = MusicDataThree(data_file,
                          label_file,
                          start=test_start,
                          total=test_end,
                          mode='one-hot')
# criterion = nn.MSELoss()
criterion = nn.CrossEntropyLoss()


def train(net=net,
          criterion=criterion,
          model_path='tmp.pt',
          dataset=train_set,