def add_cluster_with_representative(self, genome_id: ObjectId): cluster = Cluster() cluster._id = ObjectId("00000000000000000000000"+str(self.next_id)) cluster.representative = genome_id cluster.fitness = int(str(genome_id)) self.clusters.append(cluster) self.next_id += 1
def decode_Cluster(document: dict) -> Cluster: try: if document['_type'] == 'Cluster': document.pop('_type') cluster = Cluster() cluster.__dict__ = document return cluster except KeyError: return None
def add_cluster_with_representative( self, genome_id: ObjectId ) -> ObjectId: cluster = Cluster() cluster.representative = genome_id return self._database_connector.insert_one( "clusters", Transformator.encode_Cluster(cluster) )
def test_selectClusterForCombination(self): offspring = [10, 10, 10, 10] cluster = [] counter = 0 for i in offspring: c = Cluster() c.offspring = i c.fitness = float(1/(counter+1)) cluster.append(c) counter += 1 self.mock_cluster_repository.get_current_clusters = MagicMock(return_value=cluster) c = Cluster() d = (c, c) test_comb = self.genome_selector.select_clusters_for_combination() self.assertEqual(type(d), type(self.genome_selector.select_clusters_for_combination())) self.assertFalse( test_comb[0].__eq__(test_comb[1]) )
def test_selectGenomesForDiscarding(self): """ checks if 20% of worst cluster or genomes were selected :return: """ cluster = [] genome = [] for i in range(0, 4): c = Cluster() c.offspring = i cluster.append(c) for i in range(0, 10): g = StorageGenome() g.fitness = float(1/(i+1)) genome.append(g) self.mock_cluster_repository.get_current_clusters = MagicMock(return_value=cluster) self.mock_genome_repository.get_genomes_in_cluster = MagicMock(return_value=genome) self.assertEqual(8, len(self.genome_selector.select_genomes_for_discarding()))
def test_selectGenomesForBreeding_and_selectGenomesForMutation(self): offspring = [10, 10, 10, 10] cluster = [] genome = [] for i in offspring: c = Cluster() c.offspring = i cluster.append(c) for i in range(0, 8): g = StorageGenome() g.fitness = float(1/(i+1)) genome.append(g) g = StorageGenome() self.mock_cluster_repository.get_current_clusters = MagicMock(return_value=cluster) self.mock_genome_repository.get_genomes_in_cluster = MagicMock(return_value=genome) self.assertEqual(8, len(self.genome_selector.select_genomes_for_breeding(0.2))) self.assertEqual(type(g), type(self.genome_selector.select_genomes_for_breeding(0.2)[0][0])) self.assertEqual(type(g), type(self.genome_selector.select_genomes_for_mutation(0.2)[0])) self.assertEqual(8, len(self.genome_selector.select_genomes_for_mutation(0.2)))
def test_selectClusterCombination(self): offspring = [10, 10] cluster = [] genome = [] for i in offspring: c = Cluster() c.offspring = i cluster.append(c) for i in range(0, 8): g = StorageGenome() g.fitness = float(1/(i+1)) genome.append(g) self.mock_genome_repository.get_genomes_in_cluster = MagicMock(return_value=genome) test_comb = self.genome_selector.select_cluster_combinations(cluster[0], cluster[1], 2) g = StorageGenome() g_type = (g, g) g_list = [g_type] self.assertEqual(2, len(test_comb)) self.assertEqual(type(g_list), type(test_comb)) self.assertEqual(2, len(test_comb[0])) self.assertEqual(type(g_type), type(test_comb[0]))
def test_getClusterAreaSortedByFitness(self): unsorted = [0.0, 1.0, 2.4, 0.4, 0.9, 0.12, 4.32, 3.2, 5.1, 0.55] chosen = [0.4, 0.55, 0.9, 1.0, 2.4, 3.2] discard = [0.0, 0.12] cluster = [] cluster_chosen = [] cluster_discard = [] for i in unsorted: c = Cluster() c.fitness = i cluster.append(c) if i in chosen: cluster_chosen.append(c) if i in discard: cluster_discard.append(c) self.mock_cluster_repository.get_current_clusters = MagicMock(return_value=cluster) cluster_chosen.sort(key=lambda x: x.fitness) self.assertListEqual(cluster_chosen, self.genome_selector.get_cluster_area_sorted_by_fitness(0.2, 0.8)) self.assertListEqual(cluster_discard, self.genome_selector.select_clusters_for_discarding())