Esempio n. 1
0
 def __init__(self, model_params):
     super(Main, self).__init__(
         build_ecfp=Finger_print.ECFP(model_params),
         build_fcfp=Finger_print.FCFP(model_params),
         ecfp_attension=L.Linear(model_params['fp_length'], 1),
         fcfp_attension=L.Linear(model_params['fp_length'], 1),
         dnn=Deep_neural_network.DNN(model_params),
     )
Esempio n. 2
0
	def __init__(self, model_params):
		super(Main, self).__init__(
			build_ecfp = Finger_print.ECFP(model_params),
			build_fcfp = Finger_print.FCFP(model_params),
			ecfp_attension_1 = L.Linear(model_params['fp_length'], model_params['importance_l1_size']),
			fcfp_attension_1 = L.Linear(model_params['fp_length'], model_params['importance_l1_size']),
			ecfp_attension_2 = L.Linear(model_params['importance_l1_size'], model_params['importance_l2_size']),
			fcfp_attension_2 = L.Linear(model_params['importance_l1_size'], model_params['importance_l2_size']),
			ecfp_attension_3 = L.Linear(model_params['importance_l2_size'],model_params['fp_length']),
			fcfp_attension_3 = L.Linear(model_params['importance_l2_size'],model_params['fp_length']),
			dnn = Deep_neural_network.DNN(model_params),
		)
Esempio n. 3
0
 def __init__(self, model_params):
     initializer = chainer.initializers.HeNormal()
     super(Main, self).__init__(
         build_ecfp=Finger_print.ECFP(model_params),
         build_fcfp=Finger_print.FCFP(model_params),
         attention_layer1=L.Linear(2 * model_params['fp_length'],
                                   model_params['importance_l1_size'],
                                   initialW=initializer),
         attention_layer2=L.Linear(model_params['importance_l1_size'],
                                   model_params['importance_l2_size'],
                                   initialW=initializer),
         attention_layer3=L.Linear(model_params['importance_l2_size'],
                                   2,
                                   initialW=initializer),
         dnn=Deep_neural_network.DNN(model_params),
     )
Esempio n. 4
0
	def __init__(self, out_dim, hidden_dim=16, n_layers=4, max_degree=6,
					n_atom_types=MAX_ATOMIC_NUM, concat_hidden=False, model_params=None):
		super(NFP_attention, self).__init__() 
		num_degree_type = max_degree + 1 
		with self.init_scope():
			#self.embed = chainer_chemistry.links.EmbedAtomID(
			#	in_size=n_atom_types, out_size=hidden_dim)
			#self.layers = chainer.ChainList(
			#	*[NFPUpdate(hidden_dim, hidden_dim, max_degree=max_degree)
			# 	  for _ in range(n_layers)])
			#self.read_out_layers = chainer.ChainList(
			#	*[NFPReadout(hidden_dim, out_dim)
		   	#	  for _ in range(n_layers)])
			self.attention_layer_1 = chainer.links.Linear(out_dim,1)
			self.out_dim = out_dim
			self.hidden_dim = hidden_dim
			self.max_degree = max_degree
			self.num_degree_type = num_degree_type
			self.n_layers = n_layers
			self.concat_hidden = concat_hidden
			self.build_fp1 = Finger_print.ECFP(model_params)
			self.build_fp2 = Finger_print.FCFP(model_params)
Esempio n. 5
0
	def __init__(self, model_params):
		super(Main, self).__init__(
			fp = Finger_print.FP(model_params),
			dnn = Deep_neural_network.DNN(model_params),
		)
Esempio n. 6
0
 def __init__(self, model_params):
     super(Main, self).__init__(
         build_ecfc=Finger_print.ECFC(model_params),
         dnn=Deep_neural_network.DNN(model_params),
     )