def create_series(in_array, window_size, period, minV, maxV, layer_nodes=[2, 3], sigmoid='tanh', epochs=50000): global_max = maxV global_min = minV X_train = [] y_train = [] for i in range(len(in_array) - window_size): X = [] for j in range(window_size): X.append(_scale_to_binary(in_array[i + j], global_min, global_max)) X_train.append(X) y_train.append( _scale_to_binary(in_array[i + window_size], global_min, global_max)) X_train = np.array(X_train) y_train = np.array(y_train) layers = [] layers.append(window_size) for i in range(len(layer_nodes)): layers.append(layer_nodes[i]) n = NeuralNetwork(layers, sigmoid) n.fit(X_train, y_train, epochs) X_test = in_array[-window_size:] for i in range(len(X_test)): X_test[i] = _scale_to_binary(X_test[i], global_min, global_max) preds = [] X_test = deque(X_test) for i in range(period): val = n.predict(X_test) preds.append(rescale_from_binary(val[0], global_min, global_max)) X_test.rotate(-1) X_test[window_size - 1] = val[0] return preds
def create_series(in_array,window_size,period, minV, maxV, layer_nodes = [2,3], sigmoid = 'tanh', epochs = 50000): global_max = maxV global_min = minV X_train = [] y_train = [] for i in range(len(in_array)-window_size): X = [] for j in range(window_size): X.append(_scale_to_binary(in_array[i+j],global_min,global_max)) X_train.append(X) y_train.append(_scale_to_binary(in_array[i+window_size],global_min,global_max)) X_train = np.array(X_train) y_train = np.array(y_train) layers = [] layers.append(window_size) for i in range(len(layer_nodes)): layers.append(layer_nodes[i]) n = NeuralNetwork(layers,sigmoid) n.fit(X_train,y_train, epochs) X_test = in_array[-window_size:] for i in range(len(X_test)): X_test[i]=_scale_to_binary(X_test[i],global_min,global_max) preds = [] X_test = deque(X_test) for i in range(period): val = n.predict(X_test) preds.append(rescale_from_binary(val[0], global_min, global_max)) X_test.rotate(-1) X_test[window_size-1] = val[0] return preds
def initialize(self, args=None): if args is None: #random.seed(1) self.nn = NeuralNetwork(5, 5, 1) else: self.nn = args['nn'] self.crashed = False # movementInfo = showWelcomeAnimation() # select random player sprites randPlayer = random.randint(0, len(settings.PLAYERS_LIST) - 1) #print(type(settings.IMAGES['player'][0][0])) self.movementInfo = { 'playery': int((settings.SCREENHEIGHT - settings.IMAGES['player'][0][0].get_height()) / 2), 'basex': -10, 'playerIndexGen': cycle([0, 1, 2, 1]), } self.basex = self.movementInfo['basex'] self.score = self.playerIndex = self.loopIter = 0 self.playerIndexGen = self.movementInfo['playerIndexGen'] self.playerx, self.playery = int(settings.SCREENWIDTH * 0.2), self.movementInfo['playery'] # player velocity, max velocity, downward accleration, accleration on flap self.playerVelY = -9 # player's velocity along Y, default same as playerFlapped self.playerMaxVelY = 10 # max vel along Y, max descend speed self.playerMinVelY = -8 # min vel along Y, max ascend speed self.playerAccY = 1 # players downward accleration self.playerRot = 45 # player's rotation self.playerVelRot = 3 # angular speed self.playerRotThr = 20 # rotation threshold self.playerFlapAcc = -9 # players speed on flapping self.playerFlapped = False # True when player flaps
def cross_validate(network_shape, epochs_num, learn_rate, _groups_x, _groups_y): k = _groups_x.shape[0] _sum = 0 results = np.zeros(k) for i in range(k): train_x = None train_y = None valid_x = np.copy( _groups_x[i]) # the validation set for th i'th iteration. valid_y = np.copy(_groups_y[i]) net = NeuralNetwork(network_shape, epochs_num, learn_rate) for j in range(k): if j != i: # arrange the train set for the i'th iteration. if train_x is None: train_x = np.copy(_groups_x[j]) train_y = np.copy(_groups_y[j]) else: train_x = np.concatenate((train_x, _groups_x[j]), axis=0) train_y = np.concatenate((train_y, _groups_y[j]), axis=0) old_mins, denoms = norm.minmax_params(train_x) train_x = norm.minmax(train_x, 0, 1) valid_x = norm.minmax(valid_x, 0, 1, old_mins, denoms) net.train(train_x, train_y) results[i] = net.accuracy(valid_x, valid_y) old_mins, denoms = norm.minmax_params(train_x) train_x = norm.minmax(train_x, 0, 1) valid_x = norm.minmax(valid_x, 0, 1, old_mins, denoms) print(results) return np.average(results)
def main(): node_pairs_list = read_file("digit-examples-all.txt") train_split = 1 print("Split: {0}0% train, {1}0% test".format(str(train_split), str(10 - train_split))) train_set_size = (5620 // 10) * train_split training_set = node_pairs_list[0:train_set_size + 1] test_set = node_pairs_list[train_set_size + 1:] #training_set = node_pairs_list[0 : 50] #test_set = node_pairs_list[50 : 100] weights = [] for i in range(64): weights.append([random.uniform(-1, 1) for x in range(10)]) for pair in training_set: neural_net = NeuralNetwork(pair[0], pair[1], weights) neural_net.train_NN() weights = neural_net.weights_list euclidean_distance = 0 for pair in test_set: neural_net = NeuralNetwork(pair[0], pair[1], weights) euclidean_distance += neural_net.test_NN() weights = neural_net.weights_list if (euclidean_distance == 0): avg_euclidean_distance = 0 else: avg_euclidean_distance = euclidean_distance / len(test_set) print("Average Euclidean Distance: {}".format(avg_euclidean_distance))
''' Load the data. For this demo, we're using sklearn's digits dataset Digits are 8x8 pixel images. Each row is one image, in a linear format, where columns 65-74 correspond to one hot encoded responses representing digits 0 through 9. 1797 rows 74 columns ''' data = np.loadtxt("transformed.csv", delimiter = ',') m = len(data) # Split the data into training set and test set. train_set = data[:(3*m/4),:] test_set = data[m/4:,:] # Instantiate a new neural network. 64 input, 64 hidden, 10 output nodes. NN = NeuralNetwork(64,HIDDEN_NODES,10,LEARNING_RATE,ITERATIONS) # Train on the training set, test on the test set. The test() function # will print out the percent correctness on the test set. errors = NN.train(train_set) NN.test(test_set) # Plot the error curve if VIEW_PLOT == True: plt.plot(errors) plt.title("Average Error Per Iteration On Training Set") plt.xlabel("Iteration") plt.ylabel("Average Error") pylab.show()
import numpy as np digits = load_digits() x = np.array(digits.data[:100]) y = np.array([[int(i == digit) for i in range(10)] for digit in digits.target[:100]]) validation_x = np.array(digits.data[100:120]) validation_y = np.array([[int(i == digit) for i in range(10)] for digit in digits.target[100:120]]) training_data = {'inputs': x, 'labels': y} validation_data = {'inputs': validation_x, 'labels': validation_y} P = Preprocessor.from_data(training_data) NN = NeuralNetwork.new([64, 10, 10], 'tanh') training_data = P.transform_data(training_data) validation_data = P.transform_data(validation_data) trainer = Trainer(NN, training_data, validation_data, classification=True) trainer.train({ 'learning_rate': 0.01, 'epoch_blocks': 10, 'batch_size': 100 }, { 'max_epochs': 2000, 'max_stall_blocks': 10 })
#result = [a - b for a, b in zip(A, B)] result = np.subtract(A, B) return (result) #This is the next choice if __name__ == '__main__': test = test() print("getting dataset") test.getDataset(1) print(np.asarray(test.y).reshape((9, -1))) print(np.shape(test.X)) print(np.shape(test.y)) nn = NeuralNetwork([9, 18, 18, 9]) nn.train(X=np.asarray(test.X).reshape((9, -1)), y=np.asarray(test.y).reshape((9, -1)), batch_size=9, epochs=2, learning_rate=0.4, print_every=10, validation_split=0.2, tqdm_=False, plot_every=20000) #X is the current gamestate and y is the next move to make #X = np.random.random((1,9)) #print(X) #network = Network()
class bird(): def __init__(self, args=None): if args is None: #random.seed(1) self.nn = NeuralNetwork(5, 4, 1) else: self.nn = args['nn'] def initialize(self, args=None): if args is None: #random.seed(1) self.nn = NeuralNetwork(5, 5, 1) else: self.nn = args['nn'] self.crashed = False # movementInfo = showWelcomeAnimation() # select random player sprites randPlayer = random.randint(0, len(settings.PLAYERS_LIST) - 1) #print(type(settings.IMAGES['player'][0][0])) self.movementInfo = { 'playery': int((settings.SCREENHEIGHT - settings.IMAGES['player'][0][0].get_height()) / 2), 'basex': -10, 'playerIndexGen': cycle([0, 1, 2, 1]), } self.basex = self.movementInfo['basex'] self.score = self.playerIndex = self.loopIter = 0 self.playerIndexGen = self.movementInfo['playerIndexGen'] self.playerx, self.playery = int(settings.SCREENWIDTH * 0.2), self.movementInfo['playery'] # player velocity, max velocity, downward accleration, accleration on flap self.playerVelY = -9 # player's velocity along Y, default same as playerFlapped self.playerMaxVelY = 10 # max vel along Y, max descend speed self.playerMinVelY = -8 # min vel along Y, max ascend speed self.playerAccY = 1 # players downward accleration self.playerRot = 45 # player's rotation self.playerVelRot = 3 # angular speed self.playerRotThr = 20 # rotation threshold self.playerFlapAcc = -9 # players speed on flapping self.playerFlapped = False # True when player flaps # hitmask for player' def getHitmask(self, image): """returns a hitmask using an image's alpha.""" mask = [] for x in range(image.get_width()): mask.append([]) for y in range(image.get_height()): mask[x].append(bool(image.get_at((x, y))[3])) return mask def checkcrash(self, upperpipes=None, lowerpipes=None): return self.checkCrashhelper( { 'x': self.playerx, 'y': self.playery, 'index': self.playerIndex }, upperpipes, lowerpipes) def checkCrashhelper(self, player, upperPipes, lowerPipes): """returns True if player collders with base or pipes.""" pi = player['index'] player['w'] = settings.IMAGES['player'][0][0].get_width() player['h'] = settings.IMAGES['player'][0][0].get_height() # if player crashes into ground if player['y'] + player['h'] >= settings.BASEY - 1: return [True, True] # if player['y'] + player['h'] <= SCREENHEIGHT - 1: # return [True, True] else: playerRect = pygame.Rect(player['x'], player['y'], player['w'], player['h']) for uPipe, lPipe in zip(upperPipes, lowerPipes): # upper and lower pipe rects uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], settings.pipeW, settings.pipeH) lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], settings.pipeW, settings.pipeH) # player and upper/lower pipe hitmasks pHitMask = settings.HITMASKS['player'][pi][0] uHitmask = settings.HITMASKS['pipe'][0] lHitmask = settings.HITMASKS['pipe'][1] # if bird collided with upipe or lpipe uCollide = self.pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask) lCollide = self.pixelCollision(playerRect, lPipeRect, pHitMask, lHitmask) if uCollide or lCollide: return [True, False] return [False, False] def pixelCollision(self, rect1, rect2, hitmask1, hitmask2): """Checks if two objects collide and not just their rects""" rect = rect1.clip(rect2) if rect.width == 0 or rect.height == 0: return False x1, y1 = rect.x - rect1.x, rect.y - rect1.y x2, y2 = rect.x - rect2.x, rect.y - rect2.y for x in range(rect.width): for y in range(rect.height): if hitmask1[x1 + x][y1 + y] and hitmask2[x2 + x][y2 + y]: return True return False def decide_to_flap(self, args=None): input = [ args['y'], args['pipex'], args['upipey'], args['lpipey'], args['vely'] ] hidden_state, output = self.nn.think(np.array(input)) #print(output) if output[0] > 0.5: #print("*True") return True else: #print("*False") return False def think(self, upperPipes, lowerPipes): closestpipe = None closestpipeindex = 0 closestDistance = math.inf for index, pipe in enumerate(upperPipes): pipeMidPos = pipe['x'] + settings.IMAGES['pipe'][0][0].get_width( ) / 2 dist = pipeMidPos - self.playerMidPos if dist > 0 and closestDistance > dist: closestpipe = pipe closestDistance = dist closestpipeindex = index if len(upperPipes) > 0: pipex = closestpipe['x'] + settings.IMAGES['pipe'][0][0].get_width( ) / 2 - self.playerMidPos upipey = closestpipe['y'] + settings.IMAGES['pipe'][0][ 0].get_height() lpipey = lowerPipes[closestpipeindex]['y'] # print("x : {} y : {} pipex : {} upipey: {} lpipey: {}".format(playerMidPos, playerMidPosy , pipex,upipey,lpipey)) if self.playery > -2 * settings.IMAGES['player'][0][0].get_height(): args = {} args['y'], args['pipex'], args['lpipey'], args[ 'upipey'] = self.playerMidPosy / settings.SCREENHEIGHT, pipex / settings.SCREENWIDTH, lpipey / settings.SCREENHEIGHT, upipey / settings.SCREENHEIGHT args['y'], args['pipex'], args['lpipey'], args[ 'upipey'] = self.playerMidPosy, pipex, lpipey, upipey args['vely'] = self.playerVelY # print(args) self.playerFlapped = self.decide_to_flap(args=args) if self.playerFlapped: self.playerVelY = self.playerFlapAcc # playerIndex basex change if (self.loopIter + 1) % 3 == 0: playerIndex = next(self.playerIndexGen) self.loopIter = (self.loopIter + 1) % 30 self.basex = -((-self.basex + 100) % settings.baseShift) # rotate the player if self.playerRot > -90: self.playerRot -= self.playerVelRot # player's movement if self.playerVelY < self.playerMaxVelY and not self.playerFlapped: self.playerVelY += self.playerAccY if self.playerFlapped: self.playerFlapped = False # more rotation to cover the threshold (calculated in visible rotation) self.playerRot = 45 self.playerHeight = settings.IMAGES['player'][ self.playerIndex][0].get_height() self.playery += min(self.playerVelY, settings.BASEY - self.playery - self.playerHeight) def update_score(self, upperPipes): # check for score self.playerMidPos = self.playerx + settings.IMAGES['player'][0][ 0].get_width() / 2 self.playerMidPosy = self.playery indexiter = -1 for pipe in upperPipes: pipeMidPos = pipe['x'] + settings.IMAGES['pipe'][0][0].get_width( ) / 2 indexiter += 1 if pipeMidPos <= self.playerMidPos < pipeMidPos + 4: # print("Check 1") self.score += 1 def update_surface(self): # Player rotation has a threshold self.visibleRot = self.playerRotThr if self.playerRot <= self.playerRotThr: self.visibleRot = self.playerRot self.playerSurface = pygame.transform.rotate( settings.IMAGES['player'][self.playerIndex][0], self.visibleRot)
from NeuralNet import NeuralNetwork digits = load_digits() X = digits.data Y = digits.target Y_classes = np.zeros((X.shape[0], 10)) for i in range(Y.shape[0]): Y_classes[i, Y[i]] = 1 Y = Y_classes X_train, X_test, y_train, y_test = train_test_split(X, Y) nn = NeuralNetwork(X_train, y_train, X_train.shape[1], 0.01, 0.1, 1000, 100, 100, y_train.shape[1]) # nn.train_neural_network() # Save theta values. # nn.save_theta() # This is executed once we have trained the neural network. index = random.randrange(0, X_test.shape[0]) nn.load_theta('theta0.csv', 'theta1.csv', 'theta2.csv') prediction = np.argmax(nn.predict(X_test[index, :].reshape((-1, 1)))) label = np.argmax(y_test[index]) plt.gray() plt.matshow(X_test[index, :].reshape((8, 8)))
def __init__(self, args=None): if args is None: #random.seed(1) self.nn = NeuralNetwork(5, 4, 1) else: self.nn = args['nn']
def main(): l1 = NeuronLayer((28, 28), True, False) l2 = NeuronLayer((10, 10)) l3 = NeuronLayer((10,), False, True) network = NeuralNetwork() network.add_layer(l1) network.add_layer(l2) network.add_layer(l3) network.connect_layers() pr = cProfile.Profile() pr.enable() training_images = os.path.abspath(os.path.join(MAIN_MODULE_PATH, "..", "data", "train-images.idx3-ubyte")) training_labels = os.path.abspath(os.path.join(MAIN_MODULE_PATH, "..", "data", "train-labels.idx1-ubyte")) network.load_data(training_images, training_labels) test_images = os.path.join(MAIN_MODULE_PATH, "..", "data", "t10k-images.idx3-ubyte") test_labels = os.path.join(MAIN_MODULE_PATH, "..", "data", "t10k-labels.idx1-ubyte") network.load_test_data(test_images, test_labels) network.SGD(0.1, 0.1, 30, 10) pr.disable() pr.print_stats(sort="cumtime")
def run_neural_nets(url_feature="", attention_url="", url_weight="sp", encoder_length=24, encoder_size=15, decoder_length=8, decoder_size=9, is_test=False, restore=False, model="NN", pre_train=False): if model == "NN": model = NeuralNetwork(encoder_length=encoder_length, encoder_vector_size=encoder_size, decoder_length=decoder_length, decoder_vector_size=decoder_size) elif model == "SAE": model = StackAutoEncoder(encoder_length=encoder_length, encoder_vector_size=encoder_size, decoder_length=decoder_length, pre_train=pre_train) else: model = Adain(encoder_length=encoder_length, encoder_vector_size=encoder_size, decoder_length=decoder_length) print('==> initializing models') with tf.device('/%s' % p.device): model.init_model() init = tf.global_variables_initializer() saver = tf.train.Saver() utils.assert_url(url_feature) tconfig = get_gpu_options() sum_dir = 'summaries' if not utils.check_file(sum_dir): os.makedirs(sum_dir) train_writer = None with tf.Session(config=tconfig) as session: if not restore: session.run(init) else: print("==> Reload pre-trained weights") saver.restore(session, url_weight) url_weight = url_weight.split("/")[-1] url_weight = url_weight.rstrip(".weights") if not is_test: suf = time.strftime("%Y.%m.%d_%H.%M") train_writer = tf.summary.FileWriter(sum_dir + "/" + url_weight + "_train", session.graph, filename_suffix=suf) valid_writer = tf.summary.FileWriter(sum_dir + "/" + url_weight + "_valid", session.graph, filename_suffix=suf) print("==> Loading dataset") dataset = utils.load_file(url_feature) if dataset: dataset = np.asarray(dataset, dtype=np.float32) lt = len(dataset) st = int(lt/2) lt = lt - st dataset = dataset[st:,:,:] train, valid = utils.process_data_grid(lt, p.batch_size, encoder_length, decoder_length, is_test) if attention_url: attention_data = utils.load_file(attention_url) else: attention_data = None model.set_data(dataset, train, valid, attention_data, session) if not is_test: best_val_epoch = 0 best_val_loss = float('inf') # best_overall_val_loss = float('inf') print('==> starting training') for epoch in xrange(p.total_iteration): print('Epoch {}'.format(epoch)) start = time.time() train_loss, _ = model.run_epoch(session, train, epoch, train_writer, train_op=model.train_op, train=True) print('Training loss: {}'.format(train_loss)) valid_loss, _ = model.run_epoch(session, valid, epoch, valid_writer) print('Validation loss: {}'.format(valid_loss)) if valid_loss < best_val_loss: best_val_loss = valid_loss best_val_epoch = epoch print('Saving weights') saver.save(session, 'weights/%s.weights' % url_weight) if (epoch - best_val_epoch) > p.early_stopping: break print('Total time: {}'.format(time.time() - start)) else: # saver.restore(session, url_weight) print('==> running model') _, preds = model.run_epoch(session, model.train, shuffle=False) pt = re.compile("weights/([A-Za-z0-9_.]*).weights") name = pt.match(url_weight) if name: name_s = name.group(1) else: name_s = url_weight utils.save_file("test_sp/%s" % name_s, preds)
def run_neural_nets(dataset, url_weight="sp", encoder_length=24, encoder_size=15, decoder_length=8, decoder_size=9, is_test=False, restore=False, model="NN", pre_train=False, forecast_factor=0): tf.reset_default_graph() print("training %s with decoder_length = %i" % (model, decoder_length)) if model == "NN": model = NeuralNetwork(encoder_length=encoder_length, encoder_vector_size=encoder_size, decoder_length=decoder_length, decoder_vector_size=decoder_size) elif model == "SAE": model = StackAutoEncoder(encoder_length=encoder_length, encoder_vector_size=encoder_size, decoder_length=decoder_length, pre_train=pre_train, forecast_factor=forecast_factor) else: model = Adain(encoder_length=encoder_length, encoder_vector_size=encoder_size, decoder_length=decoder_length, forecast_factor=forecast_factor) print('==> initializing models') with tf.device('/%s' % p.device): model.init_model() init = tf.global_variables_initializer() saver = tf.train.Saver() tconfig = get_gpu_options() with tf.Session(config=tconfig) as session: if not restore: session.run(init) else: print("==> Reload pre-trained weights") saver.restore( session, "weights/%s_%ih.weights" % (url_weight, decoder_length)) print("==> Loading dataset") train, valid = utils.process_data_grid(len(dataset), p.batch_size, encoder_length, decoder_length, is_test) model.set_data(dataset, train, valid, None, session) if not is_test: best_val_epoch = 0 best_val_loss = float('inf') print('==> starting training') for epoch in xrange(p.total_iteration): print('Epoch {}'.format(epoch)) start = time.time() train_loss, _ = model.run_epoch(session, train, epoch, None, train_op=model.train_op, train=True) print('Training loss: {}'.format(train_loss)) valid_loss, _ = model.run_epoch(session, valid, epoch, None) print('Validation loss: {}'.format(valid_loss)) if valid_loss < best_val_loss: best_val_loss = valid_loss best_val_epoch = epoch print('Saving weights') saver.save( session, 'weights/%s_%ih.weights' % (url_weight, decoder_length)) if (epoch - best_val_epoch) > p.early_stopping: break print('Total time: {}'.format(time.time() - start)) else: # saver.restore(session, url_weight) print('==> running model') _, preds = model.run_epoch(session, model.train, shuffle=False, stride=2) return preds return None
plt.grid(1) plt.xlabel('epochs') plt.legend() plt.subplot(1, 2, 2) plt.plot(range(history['epochs'])[:n], history['train_acc'][:n], label='train_acc') plt.plot(range(history['epochs'])[:n], history['test_acc'][:n], label='test_acc') plt.title('train & test accuracy') plt.grid(1) plt.xlabel('epochs') plt.legend() #LINEAR PROBLEM data = datasets.make_blobs(n_samples=1000, centers=2, random_state=2) X = data[0].T y = np.expand_dims(data[1], 1).T neural_net = NeuralNetwork([2, 4, 4, 1], seed=0) history = neural_net.train(X=X, y=y, batch_size=16, epochs=100, learning_rate=0.4, validation_split=0.2) plot_history(history)
import os.path from sklearn import datasets from matplotlib import pyplot as plt from NeuralNet import NeuralNetwork def generate_halfmoon_dataset(n_samples=200, shuffle=True, noise=0): np.random.seed(0) X, y = datasets.make_moons(n_samples, shuffle=shuffle, noise=noise) return X, y X_train, y_train = generate_halfmoon_dataset(noise=0.1) X_test, y_test = generate_halfmoon_dataset(noise=0.1) nn = NeuralNetwork([2, 4, 2, 1], 0.03) if (not os.path.isfile("nn_halfmoon_noise_0.1_tanh.npy")): train = [X_train, y_train] nn.train_network(train, n_epochs=0, threshold=0.001) np.save("nn_halfmoon_noise_0.1_tanh", nn.get_network()) else: W = np.load("nn_halfmoon_noise_0.1_tanh.npy") print("loaded weight matrix W = %s\n" % (W)) nn.load_network(W) y_test_test = [] for i in range(len(y_test)): y_test_test.append(np.around(np.squeeze(nn.predict(X_test[i])))) y_train_test = [] for j in range(len(y_test)):
import numpy as np from sklearn.datasets import load_iris from NeuralNet import NeuralNetwork from NeuralNet import calc_accuracy from sklearn.model_selection import train_test_split iris = load_iris() X = iris.data Y = iris.target # Transform Y into the required format. Y_iris = np.zeros((Y.shape[0], 3)) for i in range(Y_iris.shape[0]): Y_iris[i, Y[i]] = 1 # Split the data into training and testing data. X_train, X_test, y_train, y_test = train_test_split(X, Y_iris, random_state=76) nn = NeuralNetwork(X_train, y_train, X_train.shape[1], 0.01, 0.1, 1000, 32, y_train.shape[1]) nn.train_neural_network() print("Training accuracy: " + str(calc_accuracy(nn, X_train, y_train))) print("Testing accuracy: " + str(calc_accuracy(nn, X_test, y_test))) nn.save_theta()
from NeuralNet import NeuralNetwork from NeuronLayer import NeuronLayer import cProfile import os if __name__ == "__main__": l1 = NeuronLayer((28, 28), True, False) l2 = NeuronLayer((100, )) l3 = NeuronLayer((10, ), False, True) network = NeuralNetwork() network.add_layer(l1) network.add_layer(l2) network.add_layer(l3) network.connect_layers() pr = cProfile.Profile() pr.enable() network.load_data(os.path.abspath("data/train-images.idx3-ubyte"), os.path.abspath("data/train-labels.idx1-ubyte")) network.load_test_data(os.path.abspath("data/t10k-images.idx3-ubyte"), os.path.abspath("data/t10k-labels.idx1-ubyte")) network.SGD(0.1, 0.1, 30, 10) pr.disable() pr.print_stats(sort="cumtime")
# Preset Parameters "n_inputs" : image_length, # Number of input signals "n_outputs" : 1, # Number of output signals from the network "n_hidden_layers" : 1, # Number of hidden layers in the network (0 or 1 for now) "n_hiddens" : 100, # Number of nodes per hidden layer "activation_functions" : [ LReLU_function, sigmoid_function ], # Activation functions by layer # Optional parameters "weights_low" : -0.1, # Lower bound on initial weight range "weights_high" : 0.1, # Upper bound on initial weight range "save_trained_network" : False, # Save trained weights or not. "batch_size" : 1, # 1 for stochastic gradient descent, 0 for gradient descent } # Initialization network = NeuralNetwork( settings ) # Train network.train( fem_images, fem_scores, # Trainingset ERROR_LIMIT = 1e-3, # Acceptable error bounds learning_rate = 1e-5, # Learning Rate ) # Alter image network.alter_image( fem_images[0], # Image to alter fem_scores[0] # Label for initial backprop )