Esempio n. 1
0
    def setParameters(self, F=0.78, CR=0.35, CrossMutt=CrossBest1, **ukwargs):
        r"""**__init__(self, D, NP, nFES, A, r, Qmin, Qmax, benchmark)**.

		**Arguments:**

		F {decimal} -- scaling factor

		CR {decimal} -- crossover
		"""
        BatAlgorithm.setParameters(self, **ukwargs)
        self.F, self.CR, self.CrossMutt = F, CR, CrossMutt
        if ukwargs: logger.info('Unused arguments: %s' % (ukwargs))
Esempio n. 2
0
    def setParameters(self, F=0.50, CR=0.90, CrossMutt=CrossBest1, **ukwargs):
        r"""Set core parameters of HybridBatAlgorithm algorithm.

		Arguments:
			F (Optional[float]): Scaling factor.
			CR (Optional[float]): Crossover.

		See Also:
			* :func:`NiaPy.algorithms.basic.BatAlgorithm.setParameters`
		"""
        BatAlgorithm.setParameters(self, **ukwargs)
        self.F, self.CR, self.CrossMutt = F, CR, CrossMutt
Esempio n. 3
0
    def setParameters(self,
                      NP=40,
                      A=0.5,
                      r=0.5,
                      Qmin=0.0,
                      Qmax=2.0,
                      F=0.78,
                      CR=0.35,
                      CrossMutt=CrossBest1,
                      **ukwargs):
        r"""Set core parameters of HybridBatAlgorithm algorithm.

		Arguments:
			F (Optional[float]): Scaling factor.
			CR (Optional[float]): Crossover.

		See Also:
			* :func:`NiaPy.algorithms.basic.BatAlgorithm.setParameters`
		"""
        BatAlgorithm.setParameters(self, **ukwargs)
        self.A, self.r, self.Qmin, self.Qmax, self.F, self.CR, self.CrossMutt = A, r, Qmin, Qmax, F, CR, CrossMutt
        if ukwargs: logger.info('Unused arguments: %s' % (ukwargs))
Esempio n. 4
0
File: hba.py Progetto: tuahk/NiaPy
 def setParameters(self, **kwargs):
     BatAlgorithm.setParameters(self, **kwargs)
     self.__setParams(**kwargs)
Esempio n. 5
0
class BatAlgorithm(FeatureSelectionAlgorithm):
    r"""Implementation of feature selection using BA algorithm.

    Date:
        2020
    
    Author:
        Luka Pečnik

    Reference:
        The implementation is adapted according to the following article:
        D. Fister, I. Fister, T. Jagrič, I. Fister Jr., J. Brest. A novel self-adaptive differential evolution for feature selection using threshold mechanism . In: Proceedings of the 2018 IEEE Symposium on Computational Intelligence (SSCI 2018), pp. 17-24, 2018.
    
    Reference URL: 
        http://iztok-jr-fister.eu/static/publications/236.pdf   

    License:
        MIT

    See Also:
        * :class:`niaaml.preprocessing.feature_selection.feature_selection_algorithm.FeatureSelectionAlgorithm`
    """
    Name = 'Bat Algorithm'

    def __init__(self, **kwargs):
        r"""Initialize BA feature selection algorithm.
        """
        self._params = dict(A=ParameterDefinition(MinMax(0.5, 1.0),
                                                  param_type=float),
                            r=ParameterDefinition(MinMax(0.0, 0.5),
                                                  param_type=float),
                            Qmin=ParameterDefinition(MinMax(0.0, 1.0),
                                                     param_type=float),
                            Qmax=ParameterDefinition(MinMax(1.0, 2.0),
                                                     param_type=float))
        self.__ba = BA(NP=10)

    def set_parameters(self, **kwargs):
        r"""Set the parameters/arguments of the algorithm.
        """
        kwargs['NP'] = self.__ba.NP
        self.__ba.setParameters(**kwargs)

    def __final_output(self, sol):
        r"""Calculate final array of features.

        Arguments:
            sol (numpy.ndarray[float]): Individual of population/ possible solution.

        Returns:
            numpy.ndarray[bool]: Mask of selected features.
        """
        selected = numpy.ones(sol.shape[0] - 1, dtype=bool)
        threshold = sol[sol.shape[0] - 1]
        for i in range(sol.shape[0] - 1):
            if sol[i] < threshold:
                selected[i] = False
        return selected

    def select_features(self, x, y, **kwargs):
        r"""Perform the feature selection process.

        Arguments:
            x (pandas.core.frame.DataFrame): Array of original features.
            y (pandas.core.series.Series) Expected classifier results.

        Returns:
            pandas.core.frame.DataFrame: Mask of selected features.
        """
        num_features = x.shape[1]
        benchmark = _FeatureSelectionThresholdBenchmark(x, y)
        task = StoppingTask(D=num_features + 1, nFES=1000, benchmark=benchmark)
        best = self.__ba.run(task)
        return self.__final_output(benchmark.get_best_solution())

    def to_string(self):
        r"""User friendly representation of the object.

        Returns:
            str: User friendly representation of the object.
        """
        return FeatureSelectionAlgorithm.to_string(self).format(
            name=self.Name,
            args=self._parameters_to_string(self.__ba.getParameters()))