Esempio n. 1
0
def plot_example(D=10, nFES=50000):
    task = TaskConvPlot(D=D, nFES=nFES, nGEN=50000, benchmark=MyBenchmark())
    algo = HarmonySearch(HMS=50,
                         r_accept=0.7,
                         r_pa=0.2,
                         b_range=1.1,
                         task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 2
0
def plot_example():
    task = TaskConvPlot(D=50, nFES=50000, nGEN=10000, benchmark=MyBenchmark())
    algo = EvolutionStrategyMp1(mu=65,
                                k=25,
                                c_a=1.5,
                                c_r=0.25,
                                seed=None,
                                task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 3
0
def plot_example():
    task = TaskConvPlot(D=50, nFES=50000, nGEN=10000, benchmark=MyBenchmark())
    algo = ParticleSwarmAlgorithm(NP=50,
                                  C1=2.0,
                                  C2=2.0,
                                  w=0.5,
                                  vMin=-5,
                                  vMax=5,
                                  task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 4
0
def plot_example(D=10, nFES=50000):
    task = TaskConvPlot(D=D, nFES=nFES, nGEN=10000, benchmark=MyBenchmark())
    algo = SelfAdaptiveDifferentialEvolutionAlgorithm(NP=10,
                                                      F=0.5,
                                                      F_l=-1,
                                                      F_u=2.0,
                                                      Tao1=0.1,
                                                      CR=0.45,
                                                      Tao2=0.25,
                                                      task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 5
0
def plot_example():
    task = TaskConvPlot(D=50, nFES=50000, nGEN=10000, benchmark=MyBenchmark())
    algo = CamelAlgorithm(NP=50,
                          omega=0.25,
                          alpha=0.15,
                          mu=0.5,
                          S_init=1,
                          E_init=1,
                          T_min=0,
                          T_max=100,
                          task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 6
0
def plot_example(D=10, nFES=50000):
    task = TaskConvPlot(D=D, nFES=nFES, nGEN=10000, benchmark=MyBenchmark())
    algo = GlowwormSwarmOptimizationV2(n=50,
                                       nt=5,
                                       l0=5,
                                       rho=0.4,
                                       gamma=0.6,
                                       beta=0.08,
                                       s=0.03,
                                       seed=None,
                                       task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 7
0
def plot_example(D=10,
                 nFES=50000,
                 nGEN=100000,
                 seed=None,
                 optType=OptimizationType.MINIMIZATION,
                 optFunc=MinMB,
                 **kn):
    task = TaskConvPlot(D=D,
                        nFES=nFES,
                        nGEN=nGEN,
                        optType=optType,
                        benchmark=optFunc())
    algo = MonkeyKingEvolutionV2(NP=25, C=3, F=0.5, FC=0.5, R=0.4, task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 8
0
def plot_example(D=10,
                 nFES=50000,
                 nGEN=100000,
                 seed=None,
                 optType=OptimizationType.MINIMIZATION,
                 optFunc=MinMB,
                 **kn):
    task = TaskConvPlot(D=D,
                        nFES=nFES,
                        nGEN=nGEN,
                        optType=optType,
                        benchmark=optFunc())
    algo = FireworksAlgorithm(seed=seed, task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 9
0
def plot_example(D=10,
                 nFES=50000,
                 nGEN=100000,
                 seed=None,
                 optType=OptimizationType.MINIMIZATION,
                 optFunc=MinMB,
                 **kn):
    task = TaskConvPlot(D=D,
                        nFES=nFES,
                        nGEN=nGEN,
                        optType=optType,
                        benchmark=optFunc())
    algo = MultipleTrajectorySearch(task=task, n=15, C_a=1, C_r=0.5)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 10
0
def plot_example(D=10,
                 nFES=50000,
                 seed=None,
                 optType=OptimizationType.MINIMIZATION,
                 optFunc=MinMB):
    task = TaskConvPlot(D=D,
                        nFES=nFES,
                        nGEN=10000,
                        optType=optType,
                        benchmark=optFunc())
    algo = GravitationalSearchAlgorithm(NP=40,
                                        F=0.5,
                                        CR=0.9,
                                        seed=seed,
                                        task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 11
0
def plot_example(D=10,
                 nFES=50000,
                 seed=None,
                 optType=OptimizationType.MINIMIZATION,
                 optFunc=MinMB,
                 **no):
    task = TaskConvPlot(D=D,
                        nFES=nFES,
                        nGEN=10000,
                        optType=optType,
                        benchmark=optFunc())
    algo = FireflyAlgorithm(NP=20,
                            alpha=0.5,
                            betamin=0.2,
                            gamma=1.0,
                            seed=seed,
                            task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 12
0
def plot_example(D=10, nFES=50000):
    task = TaskConvPlot(D=D, nFES=nFES, nGEN=10000, benchmark=MyBenchmark())
    algo = KrillHerdV11(task=task, n=15, C_a=1, C_r=0.5)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 13
0
def plot_example():
	task = TaskConvPlot(D=50, nFES=50000, nGEN=10000, benchmark=MyBenchmark())
	algo = BareBonesFireworksAlgorithm(task=task, n=15, C_a=1, C_r=0.5)
	best = algo.run()
	logger.info('%s %s' % (best[0], best[1]))
	input('Press [enter] to continue')
Esempio n. 14
0
def plot_example():
    task = TaskConvPlot(D=50, nFES=50000, nGEN=10000, benchmark=MyBenchmark())
    algo = GeneticAlgorithm(NP=40, Ts=5, Mr=0.5, Cr=0.4, task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')
Esempio n. 15
0
def plot_example():
    task = TaskConvPlot(D=50, nFES=50000, nGEN=10000, benchmark=MyBenchmark())
    algo = SineCosineAlgorithm(NP=35, a=7, Rmin=0.1, Rmax=3, task=task)
    best = algo.run()
    logger.info('%s %s' % (best[0], best[1]))
    input('Press [enter] to continue')