Esempio n. 1
0
    def __init__(self, scene_id):
        """
        class constructor for the inversion class

        Parameters
        ----------
        scene_id : String
            ID of the scene to be inverted -> links to the metadata
            stored in the OBIA4RTM database

        Returns
        -------
        None
        """
        self.scene_id = scene_id
        # get a logger
        self.__logger = get_logger()
        self.__sensor = None
        self.__scene_id = None
        self.acquisition_time, self.acquisition_date = None, None
        # angles
        self.__tts, self.__tto, self.__psi = None, None, None
        # setup the DB connection
        self.conn, self.cursor = connect_db.connect_db()
        self.__logger.info('Connected to PostgreSQL engine sucessfully!')
        # determine the directory the configuration files are located
        obia4rtm_dir = os.path.dirname(OBIA4RTM.__file__)
        fname = obia4rtm_dir + os.sep + 'OBIA4RTM_HOME'
        with open(fname, 'r') as data:
            self.__directory = data.readline()
Esempio n. 2
0
 def enable_extensions(self):
     """ 
     enables PostGIS and HSTORE extension required for OBIA4RTM
     """
     # connect to the created database
     self.__con, self.__cursor = connect_db()
     # enable the PostGIS extension
     sql = "CREATE EXTENSION PostGIS;"
     try:
         self.__cursor.execute(sql)
         self.__con.commit()
     except (ProgrammingError, DatabaseError):
         print("PostGIS setup failed!")
         sys.exit(-1)
     # enable the HSTORE extension
     sql = "CREATE EXTENSION HSTORE;"
     try:
         self.__cursor.execute(sql)
         self.__con.commit()
     except (ProgrammingError, DatabaseError):
         print("HSTORE setup failed!")
         sys.exit(-1)
Esempio n. 3
0
 def get_scene_metadata(self):
     """
     queries the relevant scene metadata from the database
     """
     # check if cursor is closed -> if closed, reconnect to database
     if self.cursor.closed:
         self.conn, self.cursor = connect_db.connect_db()
     # database query
     query = "SELECT  acquisition_time, "\
         "scene_id, sun_zenith, obs_zenith, rel_azimuth, sensor "\
         "FROM public.scene_metadata WHERE scene_id = '{}';".format(
                         self.scene_id)
     try:
         self.cursor.execute(query)
         res = self.cursor.fetchall()[0]
     except DatabaseError:
         self.__logger.error("Querying scene meta for scene '{}' failed".format(
                 self.scene_id), exc_info=True)
         close_logger(self.__logger)
         sys.exit(error_message)
     # make sure that res is not empty
     try:
         assert res is not None
     except AssertionError:
         self.__logger.error("Could not find metadata for scene '{}'".format(
                 self.scene_id))
         close_logger(self.__logger)
         sys.exit(error_message)
     # extract the desired information
     self.acquisition_time = res[0]
     self.acquisition_date = self.acquisition_time[0:10]
     self.scene_id = res[1]
     self.__tts = res[2]
     self.__tto = res[3]
     self.__psi = res[4]
     self.__sensor = res[5]
Esempio n. 4
0
def get_mean_refl_ee(shp_file, img, acqui_date, scene_id, table_name):
    """
    calculates mean reflectance per object in image. Uses GEE-Python bindings
    for reading the shape and Sentinel-2 imagery data.

    Parameters
    ----------
    shp_file : String
        file-path to ESRI shapefile with the image object boundaries
    img : ee.image.Image
        GEE imagery containing the atmospherically collected Sentinel-2 data
    acqui_date : String
        acquisition date of the imagery (used for linking to LUT and metadata)
    scene_id : String
        ID of the Sentinel-2 scene
    table_name : String
        Name of the table the object reflectance values should be written to

    Returns
    -------
    None
    """
    # open the database connection to OBIA4RTM's backend
    conn, cursor = connect_db()
    # get a logger
    logger = get_logger()
    # in case it isn't done yet:
    ee.Initialize()

    # iterate over the shapefile to get the metadata
    # Shapefile handling
    driver = ogr.GetDriverByName('ESRI Shapefile')
    shpfile = driver.Open(shp_file)
    # check if shapefile exists and could be opened
    if shpfile is None:
        raise TypeError(
            "The provided File '{}' is invalid or blocked!".format(shp_file))
    layer = shpfile.GetLayer(0)
    num_objects = layer.GetFeatureCount()

    logger.info(
        "{0} image objects will be processed. This might take a while...".
        format(num_objects))

    # loop over single features
    # get geometry of features and their ID as well as mean reflectane per band

    # before that check the raster metadata from GEE
    img_epsg = img.select('B2').projection().crs().getInfo()
    img_epsg = int(img_epsg.split(':')[1])
    # check with the epsg of the shapefile
    ref = layer.GetSpatialRef()
    if ref is None:
        logger.warning('The layer has no projection info! Assume it is the same'\
                       'as for the imagery - but check results!')
        shp_epsg = img_epsg
        # asuming that the imagery is projected in UTM as it should
        # the UTM-Zone is stored in the last two digits
        utm = int(str(shp_epsg)[3::])
    else:
        code = ref.GetAuthorityCode(None)
        shp_epsg = int(code)
        utm = ref.GetUTMZone()

    if img_epsg != shp_epsg:
        logger.error('The projection of the imagery does not match the projection '\
                     'of the shapefile you provided!'\
                     'EPSG-Code of the Image: EPSG:{0}; '\
                     'EPSG-Code of the Shapefile: EPSG:{1}'.format(
                             img_epsg,
                             shp_epsg))
        close_logger(logger)
        sys.exit(
            'An error occured while execute get_mean_refl. Check logfile!')
    # determine the min area of an object (determined by S2 spatial resolution)
    # use the "standard" resolution of 20 meters
    # an object must be twice times larger
    min_area = 20 * 60 * 2

    # for requesting the landuse information
    luc_field = 'LU' + acqui_date.replace('-', '')
    # start iterating over features
    # Get geometry and extent of feature
    for ii in range(num_objects):
        feature = layer.GetFeature(ii)
        # extract the geometry
        geom = feature.GetGeometryRef()
        # get a well-know text representation -> required by PostGIS
        wkt = geom.ExportToWkt()
        # get the ID
        # f_id = feature.GetFID() # depraceted
        f_id = feature.GetField('id')
        # get the land cover code
        luc = feature.GetField(luc_field)
        # convert to integer coding if luc is provided as text
        try:
            luc = int(luc)
        except ValueError:
            luc = luc.upper()
            query = "SELECT landuse FROM public.s2_landuse WHERE landuse_semantic = "\
            "'{0}';".format(
                    luc)
            cursor.execute(query)
            res = cursor.fetchall()
            luc = int(res[0][0])
        # end try-except
        # get the area of the feature and check if it fits the image
        # resolution -> if the object is to small skip it
        area = geom.Area()  # m2
        # the area must be at least 2.5 times larger than the coarsest
        # possible spatial resolution of Sentinel-2 (60 by 60 meters)
        if area < min_area:
            logger.warning('The object {0} was too small compared to the '\
                           'spatial resolution of Sentinel-2! '\
                           'Object area (m2): {1}; Minimum area required (m2): '\
                           '{2} -> skipping'.format(
                                   f_id,
                                   area,
                                   min_area))
            continue

        # export the coordinates of the geometry temporarily to JSON dictionary
        # for communicating with GEE
        geom_json = ast.literal_eval(geom.ExportToJson())
        # get the geometry type
        # allowed values: Polygon and Multipolygon
        geom_type = geom_json.get('type')
        # get the coordinates
        geom_coords = geom_json.get('coordinates')[0]
        # must be converted to lon, lat for GEE
        geo_coords = []
        for geom_coord in geom_coords:
            easting = geom_coord[0]
            northing = geom_coord[1]
            # call transform method
            lon, lat, alt = transform_utm_to_wgs84(easting, northing, utm)
            geo_coord = []
            geo_coord.append(lon)
            geo_coord.append(lat)
            geo_coords.append(geo_coord)

        if geom_type not in ['Polygon', 'Multipolygon']:
            logger.warning('Object with ID {} is not of type Polygon or '\
                           'Multipolygon -> skipping'.format(f_id))
            continue
        # construct a GEE geometry
        # TODO -> test what happens for Multipolygon!
        geom_gee = ee.geometry.Geometry.Polygon(geo_coords)

        # use the image reduce function to get the mean reflectance values
        # for each of the nine bands used in GEE
        meanDictionary = img.reduceRegion(reducer=ee.Reducer.mean(),
                                          geometry=geom_gee)

        # extract the computed mean values for the particular image
        # only use those bands required for OBIA4RTM
        # multiply with 100 to get % surface reflectance values
        multiplier = 100
        # surround with try-except in case only blackfill was found for a object
        try:
            B2 = meanDictionary.get('B2').getInfo() * multiplier
            B3 = meanDictionary.get('B3').getInfo() * multiplier
            B4 = meanDictionary.get('B4').getInfo() * multiplier
            B5 = meanDictionary.get('B5').getInfo() * multiplier
            B6 = meanDictionary.get('B6').getInfo() * multiplier
            B7 = meanDictionary.get('B7').getInfo() * multiplier
            B8A = meanDictionary.get('B8A').getInfo() * multiplier
            B11 = meanDictionary.get('B11').getInfo() * multiplier
            B12 = meanDictionary.get('B12').getInfo() * multiplier
        except TypeError:
            logger.info(
                'No spectral information found for Object with ID {}'.format(
                    f_id))
            continue
        # check cloud and shadow mask
        # the cloud and shadow masks are binary
        # if the average is zero everything is OK (=no clouds, no shadows)
        cm = meanDictionary.get('CloudMask').getInfo()
        sm = meanDictionary.get('ShadowMask').getInfo()
        # if the shadow and/ or the cloud mask is not zero on average
        # -> skip the object as it is cloud covered or affected by
        # cloud shadows
        if cm > 0:
            logger.info(
                'Object with ID {} is coverd by clouds -> skipping'.format(
                    f_id))
            continue
        if sm > 0:
            logger.info(
                'Object with ID {} is coverd by cloud shadows -> skipping'.
                format(f_id))
            continue
        # also make sure that the object really contains reflectance values
        # checking the first band should be sufficient
        if B2 is None:
            logger.info(
                'Object with ID {} contains only NaN values -> skipping'.
                format(f_id))
            continue
        # otherwise insert the data into the PostgreSQL database
        try:
            query = "INSERT INTO {0} (object_id, acquisition_date, landuse, object_geom, "\
                    "b2, b3, b4, b5, b6, b7, b8a, b11, b12, scene_id) VALUES ( " \
                    "{1}, '{2}', {3}, ST_Multi(ST_GeometryFromText('{4}', {5})), " \
                    "{6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, '{15}') "\
                    " ON CONFLICT (object_id, scene_id) DO NOTHING;".format(
                            table_name,
                            f_id,
                            acqui_date,
                            luc,
                            wkt,
                            img_epsg,
                            np.round(B2, 4),
                            np.round(B3, 4),
                            np.round(B4, 4),
                            np.round(B5, 4),
                            np.round(B6, 4),
                            np.round(B7, 4),
                            np.round(B8A, 4),
                            np.round(B11, 4),
                            np.round(B12, 4),
                            scene_id
                            )
        except ValueError:
            logger.error("Invalid string syntax encountered when attempting"\
                         " to generate INSERT for field {0} on '{1}'".format(
                                     f_id, acqui_date))
            continue
        # catch errors for single objects accordingly and continue with next
        # object to avoid interrupts of whole workflow
        try:
            cursor.execute(query)
            conn.commit()
        except (DatabaseError, ProgrammingError):
            logger.error(
                "Could not insert image object with ID {0} into table '{1}'".
                format(f_id, table_name),
                exc_info=True)
            conn.rollback()
            continue
    #endfor

    # close the GDAL-bindings to the files
    shpfile = None
    layer = None
    # close database connection
    close_db_connection(conn, cursor)
    # close the logger
    close_logger(logger)
Esempio n. 5
0
def create_schema():
    """
    this function is used to generate a new schema in the OBIA4RTM database.
    In case the schema already exists, nothing will happen.
    The schema to be created is taken from the obia4rtm_backend.cfg file

    Parameters
    ----------
    None

    Returns
    -------
    status : integer
        zero if everything was OK
    """
    status = 0
    # connect to OBIA4RTM database
    con, cursor = connect_db()
    # open a logger
    logger = get_logger()
    logger.info('Trying to setup a new schema for the OBIA4RTM database')
    # read in the obia4rtm_backend information to get the name of the schema
    # therefore the obia4rtm_backend.cfg file must be read
    install_dir = os.path.dirname(OBIA4RTM.__file__)
    home_pointer = install_dir + os.sep + 'OBIA4RTM_HOME'
    if not os.path.isfile(home_pointer):
        logger.error('Cannot determine OBIA4RTM Home directory!')
        close_logger(logger)
        sys.exit(-1)
    with open(home_pointer, "r") as data:
        obia4rtm_home = data.read()
    backend_cfg = obia4rtm_home + os.sep + 'obia4rtm_backend.cfg'
    if not os.path.isfile(backend_cfg):
        logger.error(
            'Cannot read obia4rtm_backend.cfg from {}!'.format(obia4rtm_home))
        close_logger(logger)
        sys.exit(sys_exit_message)
    # now, the cfg information can be read in using the configParser class
    parser = ConfigParser()
    try:
        parser.read(backend_cfg)
    except MissingSectionHeaderError:
        logger.error(
            'The obia4rtm_backend.cfg does not fulfil the formal requirements!',
            exc_info=True)
        close_logger(logger)
        sys.exit(-1)
    # no get the name of the schema
    schema = parser.get('schema-setting', 'schema_obia4rtm')
    try:
        assert schema is not None and schema != ''
    except AssertionError:
        logger.error(
            'The version of your obia4rtm_backend.cfg file seems to be corrupt!',
            exc_info=True)
        close_logger(logger)
        sys.exit(sys_exit_message)
    # if the schema name is OK, the schema can be created
    # if the schema already exists in the current database, nothing will happen
    sql = 'CREATE SCHEMA IF NOT EXISTS {};'.format(schema)
    cursor.execute(sql)
    con.commit()
    # enable PostGIS and HSTORE extension
    # enable the PostGIS extension
    # in case it fails it is most likely because the extension was almost
    # enabled as it should
    sql = "CREATE EXTENSION PostGIS;"
    try:
        cursor.execute(sql)
        con.commit()
    except (ProgrammingError, DatabaseError):
        logger.info("PostGIS already enabled!")
        con.rollback()
        pass
    # enable the HSTORE extension
    sql = "CREATE EXTENSION HSTORE;"
    try:
        cursor.execute(sql)
        con.commit()
    except (ProgrammingError, DatabaseError):
        logger.error("HSTORE already enabled!")
        con.rollback()
        pass

    logger.info(
        "Successfully created schema '{}' in current OBIA4RTM database!".
        format(schema))
    # after that the schema-specific tables are created that are required
    # in OBIA4RTM
    sql_home = install_dir + os.sep + 'SQL' + os.sep + 'Tables'
    # the tables 's2_inversion_results, s2_lookuptable, s2_objects and s2_inversion_mapping
    # must be created within the schema
    # check if the tables already exist before trying to create them
    sql_scripts = [
        's2_lookuptable.sql', 's2_inversion_results.sql', 's2_objects.sql',
        'inversion_mapping.sql'
    ]
    # go through the config file to get the table-names
    table_names = []
    table_names.append(parser.get('schema-setting', 'table_lookuptabe'))
    table_names.append(parser.get('schema-setting', 'table_inv_results'))
    table_names.append(parser.get('schema-setting', 'table_object_spectra'))
    table_names.append(parser.get('schema-setting', 'table_inv_mapping'))
    # the parser can be cleared now as all information is read
    parser.clear()
    # iterate through the 4 scripts to create the tables given they not exist
    for index in range(len(sql_scripts)):
        sql_script = sql_home + os.sep + sql_scripts[index]
        table_name = table_names[index]
        # check if the table already exists
        exists = check_if_exists(schema, table_name, cursor)
        # if already exists table log a warning and continue with the next table
        if exists:
            logger.warning(
                "Table '{0}' already exists in schema '{1}' - skipping".format(
                    table_name, schema))
            continue
        # else create the table
        # get the corresponding sql-statment and try to execute it
        sql_statement = create_sql_statement(sql_script, schema, table_name,
                                             logger)
        try:
            cursor.execute(sql_statement)
            con.commit()
        except (DatabaseError, ProgrammingError):
            logger.error("Creating table '{0}' in schema '{1}' failed!".format(
                table_name, schema),
                         exc_info=True)
            close_logger(logger)
            sys.exit(sys_exit_message)
        # log success
        logger.info("Successfully created table '{0}' in schema '{1}'".format(
            table_name, schema))
    # create the RMSE function required for inverting the spectra
    fun_home = install_dir + os.sep + 'SQL' + os.sep + 'Queries_Functions'
    rmse_fun = fun_home + os.sep + 'rmse_function.sql'
    sql_statement = create_function_statement(rmse_fun, logger)
    try:
        cursor.execute(sql_statement)
        con.commit()
    except (DatabaseError, ProgrammingError):
        logger.error("Creating function '{0}' failed!".format(rmse_fun),
                     exc_info=True)
        close_logger(logger)
        sys.exit(sys_exit_message)
    # after iterating, the db connection and the logger can be close
    close_db_connection(con, cursor)
    close_logger(logger)
    return status
Esempio n. 6
0
def update_luc_table(landcover_table, landcover_cfg=None):
    """
    updates the land-cover/ land use table in OBIA4RTM that is required for
    performing land-cover class specific vegetation parameter retrieval
    Make sure that the classes in the config file match the land cover classes
    provided for the image objects and used for generating the lookup-table.
    Otherwise bad things might happen.

    NOTE: in case land cover classes that are about to be inserted are already
    stored in the table, they will be overwritten!

    Parameters
    ----------
    landcover_table : String
        name of the table with the land cover information (<schema.table>)
    landcover_cfg : String
        file-path to land cover configurations file

    Returns
    -------
    None
    """
    # open the logger
    logger = get_logger()
    # if no other file is specified the default file from the OBIA4RTM
    # directory in the user profile will be used (landcover.cfg)
    if landcover_cfg is None:
        # determine the directory the configuration files are located
        obia4rtm_dir = os.path.dirname(OBIA4RTM.__file__)
        fname = obia4rtm_dir + os.sep + 'OBIA4RTM_HOME'
        with open(fname, 'r') as data:
            directory = data.readline()
        landcover_cfg = directory + os.sep + 'landcover.cfg'
    # check if specified file exists
    if not os.path.isfile(landcover_cfg):
        logger.error('The specified landcover.cfg cannot be found!',
                     exc_info=True)
        close_logger(logger)
        sys.exit('Error during inserting landcover information. Check log!')
    # connect database
    con, cursor = connect_db()
    # read the landcover information
    luc_classes = get_landcover_classes(landcover_cfg)
    # now read in the actual data
    n_classes = len(luc_classes)  # number of land cover classes
    try:
        assert n_classes >= 1
    except AssertionError:
        logger.error('Error: >=1 land cover class must be provided!',
                     exc_info=True)
        close_logger(logger)
        sys.exit('Error while reading the landcover.cfg file. Check log.')
    # now, iterate through the lines of the cfg files and insert it into
    # the Postgres database
    logger.info("Try to insert values into table '{0}' from landcover.cfg "\
                "file ({1})".format(
            landcover_table,
            landcover_cfg))

    for luc_class in luc_classes:
        # the first item of the tuple must be an integer value
        # the second one a string
        try:
            luc_code = int(luc_class[0])
        except ValueError:
            logger.error('Landcover.cfg file seems to be corrupt. '\
                         'Excepted integer for land cover code!',
                         exc_info=True)
            close_logger(logger)
            sys.exit('Error during inserting landcover.cfg. Check log!')
        try:
            luc_desc = luc_class[1]
        except ValueError:
            logger.error('Landcover.cfg file seems to be corrupt. '\
                         'Excepted string for land cover description!',
                         exc_info=True)
            close_logger(logger)
            sys.exit('Error during inserting landcover.cfg. Check log!')
        # insert into database
        # ON CONFLICT -> old values will be replaced
        sql = "INSERT INTO {0} (landuse, landuse_semantic) VALUES ({1},'{2}')"\
            " ON CONFLICT (landuse) DO UPDATE SET landuse = {1},"\
            " landuse_semantic = '{2}';".format(
                    landcover_table,
                    luc_code,
                    luc_desc)
        cursor.execute(sql)
        con.commit()

    # close the logger and database connection afterwards
    logger.info("Updated land cover information in table '{}'".format(
            landcover_table))
    close_logger(logger)
    close_db_connection(con, cursor)
Esempio n. 7
0
def get_mean_refl(shp_file, raster_file, acqui_date, scene_id, table_name):
    """
    calculates mean reflectance per object in image. Uses GDAL-Python bindings
    for reading the shape and raster data.

    Parameters
    ----------
    shp_file : String
        file-path to ESRI shapefile with the image object boundaries
    raster_file : String
        file-path to raster containing Sentinel-2 imagery as GeoTiff
        it is assumed that clouds/ shadows etc have already been masked out
        and these pixels are set to the according NoData value
    acqui_date : String
        acquisition date of the imagery (used for linking to LUT and metadata)
    scene_id : String
        ID of the Sentinel-2 scene
    table_name : String
        Name of the table the object reflectance values should be written to

    Returns
    -------
    None
    """
    # open the database connection to OBIA4RTM's backend
    conn, cursor = connect_db()
    # get a logger
    logger = get_logger()

    # iterate over the shapefile to get the metadata
    # Shapefile handling
    driver = ogr.GetDriverByName('ESRI Shapefile')
    shpfile = driver.Open(shp_file)
    layer = shpfile.GetLayer(0)
    num_objects = layer.GetFeatureCount()

    logger.info("{0} image objects will be processed".format(num_objects))

    # loop over single features
    # get geometry of features and their ID as well as mean reflectane per band

    # open raster data value
    raster = gdal.Open(raster_file)

    # Get image raster georeference info
    transform = raster.GetGeoTransform()
    xOrigin = transform[0]
    yOrigin = transform[3]
    pixelWidth = transform[1]
    pixelHeight = transform[5]

    # extract the epsg-code
    proj = osr.SpatialReference(wkt=raster.GetProjection())
    epsg = int(proj.GetAttrValue('AUTHORITY', 1))
    # check with the epsg of the shapefile
    ref = layer.GetSpatialRef()
    if ref is None:
        logger.warning('The layer has no projection info! Assume it is the same'\
                       'as for the imagery - but check results!')
        shp_epsg = epsg
    else:
        code = ref.GetAuthorityCode(None)
        shp_epsg = int(code)

    # check if the raster and the shapefile epsg match
    if epsg != shp_epsg:
        logger.error('The projection of the imagery does not match the projection '\
                     'of the shapefile you provided!'\
                     'EPSG-Code of the Image: EPSG:{0}; '\
                     'EPSG-Code of the Shapefile: EPSG:{1}'.format(
                             epsg,
                             shp_epsg))
        close_logger(logger)
        sys.exit(
            'An error occured while execute get_mean_refl. Check logfile!')

    # check the image raster
    num_bands = 10  # Sentinel-2 bands: B2, B3, B4, B5, B6, B7, B8A, B11, B12 + SLC
    if (raster.RasterCount != num_bands):
        logger.error(
            "The number of bands you provided does not match the image file!")
        close_logger(logger)
        sys.exit(-1)

    # determine the min area of an object (determined by S2 spatial resolution)
    # use the "standard" resolution of 20 meters
    # an object must be twice times larger
    min_area = 20 * 20 * 2  # 20 by 20 meters times two as the minimum size constraint

    # for requesting the landuse information
    luc_field = 'LU' + acqui_date.replace('-', '')
    # Get geometry and extent of feature
    for ii in range(num_objects):
        feature = layer.GetFeature(ii)
        # extract the geometry
        geom = feature.GetGeometryRef()
        # get well-known-text of feature geomtry
        wkt = geom.ExportToWkt()
        # extract feature ID
        f_id = feature.GetFID()
        # get the area of the current feature
        area = geom.Area()  # m2
        # the area must be at least 2.5 times larger than the coarsest
        # possible spatial resolution of Sentinel-2 (60 by 60 meters)
        if area < min_area:
            logger.warning('The object {0} was too small compared to the '\
                           'spatial resolution of Sentinel-2! '\
                           'Object area (m2): {1}; Minimum area required (m2): '\
                           '{2} -> skipping'.format(
                                   f_id,
                                   area,
                                   min_area))
            continue
        luc = feature.GetField(luc_field)

        # convert to integer coding if luc is provided as text
        try:
            luc = int(luc)
        except ValueError:
            luc = luc.upper()
            query = "SELECT landuse FROM s2_landuse WHERE landuse_semantic = '{0}';".format(
                luc)
            cursor.execute(query)
            res = cursor.fetchall()
            luc = int(res[0][0])
        # end try-except

        # check for feature type -> could be either POLYGON or MULTIPOLYGON
        if (geom.GetGeometryName() == 'MULTIPOLYGON'):
            count = 0
            pointsX = []
            pointsY = []
            for polygon in geom:
                geomInner = geom.GetGeometryRef(count)
                ring = geomInner.GetGeometryRef(0)
                numpoints = ring.GetPointCount()
                for p in range(numpoints):
                    lon, lat, z = ring.GetPoint(p)
                    pointsX.append(lon)
                    pointsY.append(lat)
            count += 1
        elif (geom.GetGeometryName() == 'POLYGON'):
            ring = geom.GetGeometryRef(0)
            numpoints = ring.GetPointCount()
            pointsX = []
            pointsY = []
            values = []
            for p in range(numpoints):
                lon, lat, val = ring.GetPoint(p)
                pointsX.append(lon)
                pointsY.append(lat)
                values.append(val)

        else:
            sys.exit(
                "ERROR: Geometry needs to be either Polygon or Multipolygon")
        #endif

        #get exact extent of feature for masking
        xmin = min(pointsX)
        xmax = max(pointsX)
        ymin = min(pointsY)
        ymax = max(pointsY)

        # Specify offset and rows and columns to read
        # -> thus, only a part of the array must be read
        # -> calculate the offset in rows in cols to go the specific part of the S2-raster
        xoff = int((xmin - xOrigin) / pixelWidth)
        yoff = int((yOrigin - ymax) / pixelWidth)
        xcount = int((xmax - xmin) / pixelWidth) + 1
        ycount = int((ymax - ymin) / pixelWidth) + 1

        # temporary raster for masking the actual feature
        target_ds = gdal.GetDriverByName('MEM').Create('', xcount, ycount, 1,
                                                       gdal.GDT_Byte)
        target_ds.SetGeoTransform((
            xmin,
            pixelWidth,
            0,
            ymax,
            0,
            pixelHeight,
        ))

        # Rasterize zone polygon to raster
        gdal.RasterizeLayer(target_ds, [1], layer, burn_values=[1])

        # the mask to be used for the calculation of the stats
        bandmask = target_ds.GetRasterBand(1)
        datamask = bandmask.ReadAsArray(0, 0, xcount, ycount).astype(np.float)

        # Rasterize zone polygon to raster -> thus data is only read at the location of the
        #actual feature
        gdal.RasterizeLayer(target_ds, [1], layer, burn_values=[1])

        # Read image raster as array
        meanValues = []
        # iterator variable for looping over Sentinel-2 bands
        index = 1
        # in case the object is cloud covered or of affected by cirrus
        skip_flag = False
        # iterate over the bands
        for ii in range(raster.RasterCount):
            banddataraster = raster.GetRasterBand(index)
            # read image data at the specific extent covering the actual feature
            dataraster = banddataraster.ReadAsArray(xoff, yoff, xcount,
                                                    ycount).astype(np.float)

            # Mask zone of raster
            zoneraster = np.ma.masked_array(dataraster,
                                            np.logical_not(datamask))
            # apply conversion factor of 0.01 to get the correct reflectance
            # values for ProSAIL
            if ii < raster.RasterCount - 1:
                mean = np.nanmean(zoneraster) * 0.01
                meanValues.append(mean)
            # treat the SCL band with the pre-class info differently
            else:
                counts = np.bincount(zoneraster)
                # get the most frequent value
                argmax = np.argmax(counts)
                # in case the value is greater than 4 (vegetation) skip the object
                if argmax > 4.:
                    skip_flag = True
            # increment index
            index += 1
        #endfor
        # in case the skip flag was set -> skip
        if skip_flag:
            logger.info('The object is not vegetated -> skipping!')
            continue
        # check if the results are not nan -> if there are nans skip the object
        # as the ProSAIL model inversion cannot deal with missing values
        if any(np.isnan(meanValues)):
            logger.warning('The object with ID {} contains NaNs -> skipping!')
            continue

        # insert the mean reflectane and the object geometry into DB
        query = "INSERT INTO {0} (object_id, acquisition_date, landuse object_geom, "\
                "b2, b3, b4, b5, b6, b7, b8a, b11, b12, scene_id) VALUES ( " \
                "{1}, '{2}', {3}, ST_Multi(ST_GeometryFromText('{4}', {5})), " \
                "{6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}, '{15}'}) "\
                " ON CONFLICT (object_id, scene_id) DO NOTHING;".format(
                        table_name,
                        f_id,
                        acqui_date,
                        luc,
                        wkt,
                        epsg,
                        np.round(meanValues[0], 4),
                        np.round(meanValues[1], 4),
                        np.round(meanValues[2], 4),
                        np.round(meanValues[3], 4),
                        np.round(meanValues[4], 4),
                        np.round(meanValues[5], 4),
                        np.round(meanValues[6], 4),
                        np.round(meanValues[7], 4),
                        np.round(meanValues[8], 4),
                        scene_id
                        )
        # catch errors for single objects accordingly and continue with next
        # object to avoid interrupts of whole workflow
        try:
            cursor.execute(query)
            conn.commit()
        except (DatabaseError, ProgrammingError):
            logger.error(
                "Could not insert image object with ID {0} into table '{1}'".
                format(f_id, table_name),
                exc_info=True)
            conn.rollback()
            continue
    # endfor

    # close the GDAL-bindings to the files
    raster = None
    shpfile = None
    layer = None
    # close database connection
    close_db_connection(conn, cursor)
Esempio n. 8
0
    def do_inversion(self, land_use, num_solutions, res_table,
                     object_table, inv_mapping_table, lut_table,
                     return_specs=True):
        """
        performs inversion on all objects for a given date.
        NOTE: the object reflectance values must be already available in the data
        base.
        Run gen_lut therefore before!
        Works as a wrapper around the do_object_inversion method

        Parameters
        ----------
        lande_use : Integer
            land cover code for the specific object and date
        num_solutions : Integer
            how many solutions should be used for generating the inversion result
        res_table : String
            tablename where to store the results of the inversion
            (<schema.table>)
        object_table : String
            tablename of table containing the object spectra (<schema.table>)
        inv_mapping_table : String
            tablename of the table containing the parameters to be inverted
            per acqusition date (scene) and land use/ cover class
        lut_table : String
            table containing the ProSAIL lut on a per scene and landuse / cover
            class base
        return_specs : Boolean
            determines whether inverted spectra should be returned (True; default)

        Returns
        -------
        None
        """
        # read in the scene metata
        self.get_scene_metadata()
        # get list of objects available for a given land use class at a given day
        query = "SELECT DISTINCT object_id FROM {0} " \
                " WHERE acquisition_date = '{1}'" \
                " AND landuse = {2};".format(
                        object_table,
                        self.acquisition_date,
                        land_use)
        try:
            self.cursor.execute(query)
            object_ids = self.cursor.fetchall()
            object_ids = [item[0] for item in object_ids]
            
        except Exception:
            self.__logger.error("Could not query objects for acquistion date "\
                                "'{0}' and LUC {1}".format(
                    self.acquisition_date,
                    land_use),
                    exc_info=True)
            close_logger(self.__logger)
            sys.exit(-1)
        
        # get the list of params to be inverted
        query = "SELECT params_to_be_inverted FROM {0}" \
                " WHERE scene_id = '{1}' AND landuse = {2};".format(
                        inv_mapping_table,
                        self.scene_id,
                        land_use
                        )
        try:
            self.cursor.execute(query)
            params = self.cursor.fetchall()
            params_dict = params[0][0]
            # convert to list
            params_list = []
            for key, val in params_dict.items():
                params_list.append(val)
            
            # if inverted spectra should be returned add them to params_list
            if (return_specs):
                band_names = ["B2", "B3", "B4", "B5", "B6", "B7", "B8A", "B11", "B12"]
                for band_name in band_names:
                    params_list.append(band_name)
                # endfor
            # endif
        except Exception :
            self.__logger.error("Retrieving inversion metadata for acquisition "\
                                "scene '{0}' and LUC {1} failed!".format(
                    self.scene_id,
                    land_use),
                    exc_info=True)
            close_logger(self.__logger)
            sys.exit(error_message)

        # iterate over all objects to perform the inversion per object
        for ii in range(len(object_ids)):
            object_id = object_ids[ii]
            resrun = self.do_obj_inversion(object_id,
                                           self.acquisition_date,
                                           land_use, 
                                           num_solutions,
                                           params_list,
                                           res_table,
                                           object_table,
                                           lut_table)
            # in case an error happened continue with next object
            if resrun != 0:
                # reopen the database connection in case an error occured
                self.conn, self.cursor = connect_db.connect_db()
                continue
            # endif
        # endfor

        # close database connection at the end
        if self.conn is not None:
            self.cursor.close()
            self.conn.close()
Esempio n. 9
0
def insert_scene_metadata(metadata, use_gee, raster=None):
    """
        inserts the most important scene metadata before starting the inversion
        procedure into the OBIA4RTM PostgreSQL database

        Parameters
        ----------
        metadata : Dictionary
            Sentinel-2 scene metadata
        use_gee : Boolean
            true if GEE was used, false if Sen2Core was used
        raster : String
            File-path to the Sentinel-2 imagery in case Sen2core was used

        Returns
        -------
        None
        """
    # open database connection
    conn, cursor = connect_db()
    # get sensor and scene_id
    sensor, scene_id = get_sensor_and_sceneid(metadata)
    # get mean angles from scene-metadata
    # tto -> sensor zenith angle
    # psi -> relative azimuth angle between sensor and sun
    tto, psi = get_mean_angles(metadata)
    # sun zenith angle
    tts = get_sun_zenith_angle(metadata)
    # get the footprint already as PostGIS insert statment
    footprint_statement = get_scene_footprint(metadata, gee=use_gee)
    # full metadata as JSON
    metadata_json = json.dumps(metadata)
    # storage drive and filename of the image raster data
    # this part only applies to Sen2Core preprocessing
    if use_gee:
        storage_drive = 'NA: Google Earth Engine'
        filename = 'NA: Google Earth Engine'
    else:
        splitted = os.path.split(raster)
        storage_drive = splitted[0]
        filename = splitted[1]
    # get acquisition time and date
    acquisition_time, acquisition_date = get_acqusition_time(metadata)
    # insert this basic metadata direclty into the OBIA4RTM database before
    # continuing
    statement = "INSERT INTO public.scene_metadata (acquisition_time, "\
                "scene_id, sun_zenith, "\
                "obs_zenith, rel_azimuth, sensor, footprint, full_description, "\
                "storage_drive, filename) VALUES ('{0}','{1}',{2},{3},{4},"\
                "'{5}',{6},'{7}','{8}','{9}') ON CONFLICT (scene_id) "\
                "DO NOTHING;".format(
                        acquisition_time,
                        scene_id,
                        tts,
                        tto,
                        psi,
                        sensor,
                        footprint_statement,
                        metadata_json,
                        storage_drive,
                        filename
                        )
    try:
        cursor.execute(statement)
        conn.commit()
    except DatabaseError:
        raise DatabaseError('Insert of metadata failed!')
        sys.exit()
    # close database connection
    close_db_connection(conn, cursor)