def plot_showcase_with_clusters(): ds = Table('showcase') X, = ds.to_numpy("a") w, means, covars, priors = em(X, 3, 100) stdevs = np.sqrt(covars) m, M = X.min(axis=0), X.max(axis=0) X = (X - m) / (M - m) means = (means - m) / (M - m) stdevs /= M - m parallel_coordinates_plot("showcase-clusters.pdf", X, means, stdevs)
def plot_wine_with_km(): ds = Table('wine') X, = ds.to_numpy("a") X = X[:, (3,4,5,6,9)] w, means, covars, priors = em(X, 3, 0) stdevs = np.sqrt(covars) m, M = X.min(axis=0), X.max(axis=0) X = (X - m) / (M - m) means = (means - m) / (M - m) stdevs /= M - m parallel_coordinates_plot("wine-km.pdf", X, means, stdevs)
def plot_yeast_with_km(): ds = Table('yeast-class-RPR') from Orange.feature.imputation import AverageConstructor ds = AverageConstructor()(ds)(ds) X, = ds.to_numpy("a") X = X[:, (72, 73, 74, 75, 76, 77, 78)] w, means, covars, priors = em(X, 4, 0) stdevs = np.sqrt(covars) m, M = X.min(axis=0), X.max(axis=0) X = (X - m) / (M - m) means = (means - m) / (M - m) stdevs /= M - m parallel_coordinates_plot("yeast-km.pdf", X, means, stdevs)
def plot_showcase(): ds = Table('showcase') X, = ds.to_numpy("a") m, M = X.min(axis=0), X.max(axis=0) X = (X - m) / (M - m) def annotate_critical_areas(ax): ax.add_artist(Ellipse(xy=(1., 0.6,), width=.1, height=0.3, facecolor='none')) ax.annotate('1.', xy=(1, 0.6), xytext=(0.5, 0.4), arrowprops=dict(facecolor='white', shrink=0.05)) ax.add_artist(Ellipse(xy=(2., 0.725,), width=.1, height=0.5, facecolor='none')) ax.add_artist(Ellipse(xy=(3., 0.8,), width=.1, height=0.4, facecolor='none')) ax.annotate('2.', xy=(2., 0.725), xytext=(2.5, 0.5), arrowprops=dict(facecolor='white', shrink=0.05)) ax.annotate('2.', xy=(3., 0.725), xytext=(2.5, 0.5), arrowprops=dict(facecolor='white', shrink=0.05)) parallel_coordinates_plot("showcase-lines.pdf", X, annotate=annotate_critical_areas)