def test_empty_results(self):
     """Test on empty results."""
     res = Results(data=self.iris[:0], store_data=True)
     res.row_indices = np.array([], dtype=int)
     res.actual = np.array([])
     res.predicted = np.array([[]])
     res.probabilities = np.zeros((1, 0, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.widget.select_correct()
     self.widget.select_wrong()
Esempio n. 2
0
 def test_curves_from_results_nans(self, init):
     res = Results()
     ytrue, probs = self.data.T
     ytrue[0] = np.nan
     probs[-1] = np.nan
     res.actual = ytrue.astype(float)
     res.probabilities = np.vstack((1 - probs, probs)).T.reshape(1, -1, 2)
     Curves.from_results(res)
     cytrue, cprobs = init.call_args[0]
     np.testing.assert_equal(cytrue, ytrue[1:-1])
     np.testing.assert_equal(cprobs, probs[1:-1])
 def test_nan_results(self):
     """Test on results with nan values in actual/predicted"""
     res = Results(data=self.iris, nmethods=2, store_data=True)
     res.row_indices = np.array([0, 50, 100], dtype=int)
     res.actual = np.array([0., np.nan, 2.])
     res.predicted = np.array([[np.nan, 1, 2],
                               [np.nan, np.nan, np.nan]])
     res.probabilities = np.zeros((1, 3, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.assertTrue(self.widget.Error.invalid_values.is_shown())
     self.send_signal(self.widget.Inputs.evaluation_results, None)
     self.assertFalse(self.widget.Error.invalid_values.is_shown())
Esempio n. 4
0
    def test_curves_from_results(self, init):
        res = Results()
        ytrue, probs = self.data.T
        res.actual = ytrue.astype(float)
        res.probabilities = np.vstack((1 - probs, probs)).T.reshape(1, -1, 2)
        Curves.from_results(res)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue)
        np.testing.assert_equal(cprobs, probs)

        Curves.from_results(res, target_class=0)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, 1 - ytrue)
        np.testing.assert_equal(cprobs, 1 - probs)

        res.actual = ytrue.astype(float)
        res.probabilities = np.random.random((2, 19, 2))
        res.probabilities[1] = np.vstack((1 - probs, probs)).T

        Curves.from_results(res, model_index=1)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue)
        np.testing.assert_equal(cprobs, probs)

        self.assertRaises(ValueError, Curves.from_results, res)

        ytrue[ytrue == 0] = 2 * (np.arange(10) % 2)
        res.actual = ytrue.astype(float)
        res.probabilities = np.random.random((2, 19, 3))
        res.probabilities[1] = np.vstack(
            ((1 - probs) / 3, probs, (1 - probs) * 2 / 3)).T

        Curves.from_results(res, model_index=1, target_class=1)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue == 1)
        np.testing.assert_equal(cprobs, probs)

        Curves.from_results(res, model_index=1, target_class=0)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue == 0)
        np.testing.assert_equal(cprobs, (1 - probs) / 3)

        Curves.from_results(res, model_index=1, target_class=2)
        cytrue, cprobs = init.call_args[0]
        np.testing.assert_equal(cytrue, ytrue == 2)
        np.testing.assert_equal(cprobs, (1 - probs) * 2 / 3)

        self.assertRaises(ValueError, Curves.from_results, res, model_index=1)
Esempio n. 5
0
    def _update(self):
        assert self.data is not None
        # collect all learners for which results have not yet been computed
        need_update = [(id, learner) for id, learner in self.learners.items()
                       if self.results[id] is None]
        if not need_update:
            return
        learners = [learner for _, learner in need_update]

        self.progressBarInit()
        if self.testdata is None:
            # compute the learning curve result for all learners in one go
            results = learning_curve(
                learners,
                self.data,
                folds=self.folds,
                proportions=self.curvePoints,
                callback=lambda value: self.progressBarSet(100 * value))
        else:
            results = learning_curve_with_test_data(
                learners,
                self.data,
                self.testdata,
                times=self.folds,
                proportions=self.curvePoints,
                callback=lambda value: self.progressBarSet(100 * value))

        self.progressBarFinished()
        # split the combined result into per learner/model results
        results = [
            list(Results.split_by_model(p_results)) for p_results in results
        ]

        for i, (id, learner) in enumerate(need_update):
            self.results[id] = [p_results[i] for p_results in results]
Esempio n. 6
0
    def _update(self):
        assert self.data is not None
        # collect all learners for which results have not yet been computed
        need_update = [(i, item) for (i, item) in enumerate(self.learners)
                       if item.results is None]
        if not need_update:
            return

        learners = [item.learner for _, item in need_update]

        if self.testdata is None:
            # compute the learning curve result for all learners in one go
            results = learning_curve(
                learners,
                self.data,
                folds=self.folds,
                proportions=self.curvePoints,
            )
        else:
            results = learning_curve_with_test_data(
                learners,
                self.data,
                self.testdata,
                times=self.folds,
                proportions=self.curvePoints,
            )
        # split the combined result into per learner/model results
        results = [
            list(Results.split_by_model(p_results)) for p_results in results
        ]

        for i, (_, item) in enumerate(need_update):
            item.results = [p_results[i] for p_results in results]
Esempio n. 7
0
    def _update(self):
        assert self.data is not None
        # collect all learners for which results have not yet been computed
        need_update = [(id, learner) for id, learner in self.learners.items()
                       if self.results[id] is None]
        if not need_update:
            return
        learners = [learner for _, learner in need_update]

        if self.testdata is None:
            # compute the learning curve result for all learners in one go
            results = learning_curve(
                learners, self.data, folds=self.folds,
                proportions=self.curvePoints,
            )
        else:
            results = learning_curve_with_test_data(
                learners, self.data, self.testdata, times=self.folds,
                proportions=self.curvePoints,
            )
        # split the combined result into per learner/model results
        results = [list(Results.split_by_model(p_results)) for p_results in results]

        for i, (id, learner) in enumerate(need_update):
            self.results[id] = [p_results[i] for p_results in results]
Esempio n. 8
0
    def _update(self):
        assert self.data is not None
        # collect all learners for which results have not yet been computed

        need_update = [(id, learner) for id, learner in self.learners.items()
                       if self.results[id] is None]
        if not need_update:  #啥意思?
            return

        learners = [learner for _, learner in need_update]

        # compute the learning curve result for all learners in one go
        results = learning_curve(
            learners,
            self.data,
            folds=self.folds,
            proportions=self.curvePoints,
        )  #这是一个元组
        # split the combined result into per learner/model results
        results = [
            list(Results.split_by_model(p_results)) for p_results in results
        ]

        for i, (id, learner) in enumerate(need_update):
            self.results[id] = [p_results[i] for p_results in results]
Esempio n. 9
0
def _create_results():  # pragma: no cover
    probs1 = [0.984, 0.907, 0.881, 0.865, 0.815, 0.741, 0.735, 0.635,
              0.582, 0.554, 0.413, 0.317, 0.287, 0.225, 0.216, 0.183]
    probs = np.array([[[1 - x, x] for x in probs1]])
    preds = (probs > 0.5).astype(float)
    return Results(
        data=Orange.data.Table("heart_disease")[:16],
        row_indices=np.arange(16),
        actual=np.array(list(map(int, "1100111001001000"))),
        probabilities=probs, predicted=preds
    )
Esempio n. 10
0
    def get_fold(self, fold):
        results = Results()
        results.data = self.data

        if self.folds is None:
            raise ValueError("This 'Results' instance does not have folds.")

        if self.models is not None:
            results.models = self.models[fold]

        results.row_indices = self.row_indices
        results.actual = self.actual
        results.predicted = self.predicted[:, fold, :]
        results.domain = self.domain
        return results
 def test_empty_results(self):
     """Test on empty results."""
     res = Results(data=self.iris[:0], store_data=True)
     res.row_indices = np.array([], dtype=int)
     res.actual = np.array([])
     res.predicted = np.array([[]])
     res.probabilities = np.zeros((1, 0, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.widget.select_correct()
     self.widget.select_wrong()
Esempio n. 12
0
    def _task_finished(self, f):
        """
        Parameters
        ----------
        f : Future
            The future instance holding the result of learner evaluation.
        """
        assert self.thread() is QThread.currentThread()
        assert self._task is not None
        assert self._task.future is f
        assert f.done()

        self._task = None
        self.progressBarFinished()

        try:
            results = f.result()  # type: List[Results]
        except Exception as ex:
            # Log the exception with a traceback
            log = logging.getLogger()
            log.exception(__name__, exc_info=True)
            self.error("Exception occurred during evaluation: {!r}".format(ex))
            # clear all results
            for key in self.results.keys():
                self.results[key] = None
        else:
            # split the combined result into per learner/model results ...
            results = [
                list(Results.split_by_model(p_results))
                for p_results in results
            ]  # type: List[List[Results]]
            assert all(len(r.learners) == 1 for r1 in results for r in r1)
            assert len(results) == len(self.curvePoints)

            learners = [r.learners[0] for r in results[0]]
            learner_id = {
                learner: id_
                for id_, learner in self.learners.items()
            }

            # ... and update self.results
            for i, learner in enumerate(learners):
                id_ = learner_id[learner]
                self.results[id_] = [p_results[i] for p_results in results]
        # [end-snippet-9]
        # update the display
        self._update_curve_points()
        self._update_table()
 def test_nan_results(self):
     """Test on results with nan values in actual/predicted"""
     res = Results(data=self.iris, nmethods=2, store_data=True)
     res.row_indices = np.array([0, 50, 100], dtype=int)
     res.actual = np.array([0., np.nan, 2.])
     res.predicted = np.array([[np.nan, 1, 2], [np.nan, np.nan, np.nan]])
     res.probabilities = np.zeros((1, 3, 3))
     self.send_signal(self.widget.Inputs.evaluation_results, res)
     self.assertTrue(self.widget.Error.invalid_values.is_shown())
     self.send_signal(self.widget.Inputs.evaluation_results, None)
     self.assertFalse(self.widget.Error.invalid_values.is_shown())
Esempio n. 14
0
    def _task_finished(self, f):
        """
        Parameters
        ----------
        f : Future
            The future instance holding the result of learner evaluation.
        """
        assert self.thread() is QThread.currentThread()
        assert self._task is not None
        assert self._task.future is f
        assert f.done()

        self._task = None
        self.progressBarFinished()

        try:
            results = f.result()  # type: List[Results]
        except Exception as ex:
            # Log the exception with a traceback
            log = logging.getLogger()
            log.exception(__name__, exc_info=True)
            self.error("Exception occurred during evaluation: {!r}"
                       .format(ex))
            # clear all results
            for key in self.results.keys():
                self.results[key] = None
        else:
            # split the combined result into per learner/model results ...
            results = [list(Results.split_by_model(p_results))
                       for p_results in results]  # type: List[List[Results]]
            assert all(len(r.learners) == 1 for r1 in results for r in r1)
            assert len(results) == len(self.curvePoints)

            learners = [r.learners[0] for r in results[0]]
            learner_id = {learner: id_ for id_, learner in self.learners.items()}

            # ... and update self.results
            for i, learner in enumerate(learners):
                id_ = learner_id[learner]
                self.results[id_] = [p_results[i] for p_results in results]
# [end-snippet-9]
        # update the display
        self._update_curve_points()
        self._update_table()
Esempio n. 15
0
    def _update(self):
        assert self.data is not None
        # collect all learners for which results have not yet been computed
        need_update = [(id, learner) for id, learner in self.learners.items()
                       if self.results[id] is None]
        if not need_update:
            return

        learners = [learner for _, learner in need_update]

        self.progressBarInit()
        # compute the learning curve result for all learners in one go
        results = learning_curve(
            learners, self.data, folds=self.folds,
            proportions=self.curvePoints,
            callback=lambda value: self.progressBarSet(100 * value)
        )
        self.progressBarFinished()
        # split the combined result into per learner/model results
        results = [list(Results.split_by_model(p_results))
                   for p_results in results]

        for i, (id, learner) in enumerate(need_update):
            self.results[id] = [p_results[i] for p_results in results]