Esempio n. 1
0
 def test_PCA_scorer_component(self):
     pca = PCA()
     for i in range(1, len(self.zoo.domain.attributes) + 1):
         pca.component = i
         scores = pca.score_data(self.zoo)
         self.assertEqual(scores.shape,
                          (pca.component, len(self.zoo.domain.attributes)))
Esempio n. 2
0
 def test_PCA_scorer_component(self):
     pca = PCA()
     for i in range(1, len(self.zoo.domain.attributes) + 1):
         pca.component = i
         scores = pca.score_data(self.zoo)
         self.assertEqual(scores.shape,
                          (pca.component, len(self.zoo.domain.attributes)))
Esempio n. 3
0
 def test_PCA_scorer(self):
     data = self.iris
     pca = PCA(preprocessors=[Normalize()])
     pca.component = 1
     scores = pca.score_data(data)
     self.assertEqual(scores.shape[1], len(data.domain.attributes))
     self.assertEqual(['petal length', 'petal width'],
                      sorted([data.domain.attributes[i].name
                              for i in np.argsort(scores[0])[-2:]]))
     self.assertEqual([round(s, 4) for s in scores[0]],
                      [0.5224, 0.2634, 0.5813, 0.5656])
Esempio n. 4
0
 def test_PCA_scorer(self):
     data = self.iris
     pca = PCA(preprocessors=[Normalize()])
     pca.component = 1
     scores = pca.score_data(data)
     self.assertEqual(scores.shape[1], len(data.domain.attributes))
     self.assertEqual(['petal length', 'petal width'],
                      sorted([data.domain.attributes[i].name
                              for i in np.argsort(scores[0])[-2:]]))
     self.assertEqual([round(s, 4) for s in scores[0]],
                      [0.5224, 0.2634, 0.5813, 0.5656])
Esempio n. 5
0
    def _get_pca(self):
        pca_projector = PCA(n_components=2)
        pca_projector.component = 2
        pca_projector.preprocessors = PCA.preprocessors + [Normalize()]

        pca = pca_projector(self.data)
        variance_ratio = pca.explained_variance_ratio_
        cumulative = np.cumsum(variance_ratio)

        self._pca = pca
        if not np.isfinite(cumulative[-1]):
            self.Warning.trivial_components()

        coords = pca(self.data).X
        valid_mask = ~np.isnan(coords).any(axis=1)
        # scale axes
        max_radius = np.min([np.abs(np.min(coords, axis=0)),
                             np.max(coords, axis=0)])
        axes = pca.components_.T.copy()
        axes *= max_radius / np.max(np.linalg.norm(axes, axis=1))
        return valid_mask, coords, axes