from matplotlib import animation from Orbits import ydot_orbit_3d, trapezium_orbit, trapstep # Choose random starting points, uniformly distributed from -15 to 15 jupiter = { 'xp': -3.5023653, 'xv': 0.00565429, 'yp': -3.8169847, 'yv': -0.00412490, 'zp': -1.5507963, 'zv': -0.00190589, 'm': 0.000954786104043 } jupiter_traj = trapezium_orbit(ydot_orbit_3d, [ jupiter['xp'], jupiter['xv'], jupiter['yp'], jupiter['yv'], jupiter['zp'], jupiter['zv'] ], jupiter['m'], 0, 100000, 1000, 3) saturn = { 'xp': 9.0755314, 'xv': 0.00168318, 'yp': -3.0458353, 'yv': 0.00483525, 'zp': -1.6483708, 'zv': 0.00192462, 'm': 0.000285583733151 } uranus = { 'xp': 8.3101420, 'xv': 0.00354178, 'yp': -16.2901086, 'yv': 0.00127102,
from Orbits import trapezium_orbit, trapstep, ydot_orbit_3d # PARAMETERS OF THE CURVE AND THE GIF jupiter = { 'xp': -3.5023653, 'xv': 0.00565429, 'yp': -3.8169847, 'yv': -0.00412490, 'zp': -1.5507963, 'zv': -0.00190589, 'm': 0.000954786104043 } jupiter_traj, jupiter_quant = trapezium_orbit(ydot_orbit_3d, [ jupiter['xp'], jupiter['xv'], jupiter['yp'], jupiter['yv'], jupiter['zp'], jupiter['zv'] ], jupiter['m'], 0, 100000, 1000, 3) curve_latex = (r"$\left(\,\, \cos(80t) - \cos(t^3),\,\,\," + r"\sin(t) - \sin(80t)^3 \,\,\right)$") ### increase fps to increase number of steps gif_name = "test.gif" gif_duration = 5 gif_fps = 10 # PRECOMPUTE THE CURVE t_min = 0 t_max = 1000 number_of_points = 1000