Esempio n. 1
0
 def test_get_possible_defenses(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=10, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=4, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=7, daily_volume=2, symbol='a3')
     f1 = Fund('f1', {'a1': 10, 'a2': 10, 'a3': 10}, 100, 1, 1)
     f2 = Fund('f2', {'a1': 10}, 100, 1, 1)
     SysConfig.set("STEP_ORDER_SIZE", 0.5)
     network = AssetFundNetwork.AssetFundsNetwork(
         funds={
             'f1': f1,
             'f2': f2
         },
         assets={
             'a1': a1,
             'a2': a2,
             'a3': a3
         },
         mi_calc=MockMarketImpactTestCalculator())
     actual_orders = get_possible_defenses(network, 10)
     expected_orders = []
     expected_orders.append(([Buy('a1', 5)], 5))
     expected_orders.append(([Buy('a2', 2)], 4))
     expected_orders.append(([Buy('a3', 1)], 7))
     expected_orders.append(([Buy('a1', 5), Buy('a2', 2)], 9))
     expected_orders.append(([], 0))
     actual_orders.sort(key=operator.itemgetter(1))
     expected_orders.sort(key=operator.itemgetter(1))
     self.assertEqual(len(actual_orders), len(expected_orders))
     for i in range(0, len(actual_orders)):
         actual_orders[i][0].sort(key=lambda x: x.asset_symbol)
         expected_orders[i][0].sort(key=lambda x: x.asset_symbol)
         self.assertListEqual(actual_orders[i][0], expected_orders[i][0])
         self.assertEqual(actual_orders[i][1], expected_orders[i][1])
Esempio n. 2
0
 def test_constructor(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=200, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=3, daily_volume=300, symbol='a3')
     assets = {'a1': a1, 'a2': a2, 'a3': a3}
     mgr = ActionsManager(assets, 0.1)
     sell_all_assets = [Sell('a1', 10), Sell('a2', 20), Sell('a3', 30)]
     portfolio_dict = {
         10: [Attack([Sell('a1', 10)], 10)],
         40: [Attack([Sell('a2', 20)], 40)],
         90: [Attack([Sell('a3', 30)], 90)],
         50: [Attack([Sell('a1', 10), Buy('a2', 20)], 50)],
         100: [Attack([Sell('a1', 10), Buy('a3', 30)], 100)],
         130: [Attack([Sell('a2', 20), Buy('a3', 30)], 130)],
         140:
         [Attack(
             [Sell('a1', 10), Sell('a2', 20),
              Buy('a3', 30)], 140)],
         0: [Attack([], 0)]
     }
     self.assertEqual(mgr._ActionsManager__step_order_size, 0.1)
     self.assertDictEqual({
         1: 'a1',
         2: 'a2',
         3: 'a3'
     }, mgr._ActionsManager__id_to_sym)
     self.assertDictEqual(portfolio_dict,
                          mgr._ActionsManager__portfolios_dict)
     self.assertListEqual([0, 10, 40, 50, 90, 100, 130, 140],
                          list(mgr._ActionsManager__sorted_keys))
     self.assertListEqual(sell_all_assets,
                          mgr._ActionsManager__sell_all_assets)
Esempio n. 3
0
 def test_get_single_orders(self):
     assets = {'a1': Asset(10, 100, 'a1'), 'a2': Asset(20, 200, 'a2')}
     expected_sell_orders = [Sell('a1', 10), Sell('a2', 20)]
     expected_buy_orders = [Buy('a1', 10), Buy('a2', 20)]
     actions_mgr = ActionsManager(assets, 0.1)
     actual_buy_orders = actions_mgr._ActionsManager__get_single_orders(
         assets, ActionsManager._ActionsManager__gen_buy_order)
     actual_sell_orders = actions_mgr._ActionsManager__get_single_orders(
         assets, ActionsManager._ActionsManager__gen_sell_order)
     self.assertListEqual(expected_sell_orders, actual_sell_orders)
     self.assertListEqual(expected_buy_orders, actual_buy_orders)
Esempio n. 4
0
 def test_get_possible_defenses_integ(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=100, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=3, daily_volume=100, symbol='a3')
     a4 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a4')
     f1 = Fund('f1', {'a1': 10, 'a2': 10, 'a3': 10}, 100, 1, 1)
     f2 = Fund('f2', {'a4': 10}, 100, 1, 1)
     network = AssetFundNetwork.AssetFundsNetwork(
         funds={
             'f1': f1,
             'f2': f2
         },
         assets={
             'a1': a1,
             'a2': a2,
             'a3': a3,
             'a4': a4
         },
         mi_calc=MockMarketImpactTestCalculator())
     actions_mgr = ActionsManager(network.assets, 0.1)
     history = {BUY: {'a1': 2}, SELL: {'a1': 1, 'a2': 2}}
     budget = 20
     actions_mgr._ActionsManager__funds_under_risk = MagicMock(
         return_value=['f1'])
     actual_defenses = actions_mgr.get_possible_defenses(
         network, budget, history)
     self.assertListEqual(actual_defenses, [([Buy('a2', 10)], 20), ([], 0)])
     actions_mgr._ActionsManager__funds_under_risk.assert_called_once_with(
         network)
    def test_simulate_trade_sell_orders_in_buy_command(self):
        a1 = AssetFundNetwork.Asset(price=1, daily_volume=1, symbol='a1')
        a2 = AssetFundNetwork.Asset(price=2, daily_volume=1, symbol='a2')
        f1 = Fund('f1', {'a1': 10}, 100, 1, 1)
        f2 = Fund('f2', {'a2': 10}, 100, 1, 1)
        mi_calc = MarketImpactCalculator()
        mi_calc.get_updated_price = MagicMock()
        network = AssetFundNetwork.AssetFundsNetwork(funds={
            'f1': f1,
            'f2': f2
        },
                                                     assets={
                                                         'a1': a1,
                                                         'a2': a2
                                                     },
                                                     mi_calc=mi_calc,
                                                     limit_trade_step=False)
        exception = False
        try:
            network.submit_buy_orders([Buy('a1', 2), Sell('a1', 2)])
        except TypeError:
            exception = True

        mi_calc.get_updated_price.assert_not_called()
        self.assertTrue(exception)
    def test_simulate_trade_sell_more_than_buy(self):
        a1 = AssetFundNetwork.Asset(price=1, daily_volume=1, symbol='a1')
        a2 = AssetFundNetwork.Asset(price=2, daily_volume=1, symbol='a2')
        f1 = Fund('f1', {'a1': 10}, 100, 1, 1)
        f2 = Fund('f2', {'a2': 10}, 100, 1, 1)
        mi_calc = MarketImpactCalculator()
        mi_calc.get_updated_price = MagicMock(return_value=0.5)

        network = AssetFundNetwork.AssetFundsNetwork(funds={
            'f1': f1,
            'f2': f2
        },
                                                     assets={
                                                         'a1': a1,
                                                         'a2': a2
                                                     },
                                                     mi_calc=mi_calc,
                                                     limit_trade_step=False)
        network.submit_buy_orders([Buy('a1', 2)])
        network.submit_sell_orders([Sell('a1', 3)])
        log = network.simulate_trade()
        self.assertDictEqual({'a1': '1->0.5'}, log)
        mi_calc.get_updated_price.assert_called_once_with(1, a1, -1)
        self.assertFalse(network.buy_orders)
        self.assertFalse(network.sell_orders)
        self.assertTrue(a1.price == 0.5)
        self.assertTrue(a2.price == 2)
    def test_simulate_trade_buy_equals_sell(self):
        a1 = AssetFundNetwork.Asset(price=1, daily_volume=1, symbol='a1')
        a2 = AssetFundNetwork.Asset(price=2, daily_volume=1, symbol='a2')
        f1 = Fund('f1', {'a1': 10}, 100, 1, 1)
        f2 = Fund('f2', {'a2': 10}, 100, 1, 1)
        mi_calc = MarketImpactCalculator()
        mi_calc.get_updated_price = MagicMock()

        network = AssetFundNetwork.AssetFundsNetwork(funds={
            'f1': f1,
            'f2': f2
        },
                                                     assets={
                                                         'a1': a1,
                                                         'a2': a2
                                                     },
                                                     mi_calc=mi_calc,
                                                     limit_trade_step=False)
        network.submit_buy_orders([Buy('a1', 3)])
        network.submit_sell_orders([Sell('a1', 3)])
        log = network.simulate_trade()
        mi_calc.get_updated_price.assert_not_called()
        self.assertFalse(log)
        self.assertFalse(network.buy_orders)
        self.assertFalse(network.sell_orders)
        self.assertTrue(a1.price == 1)
        self.assertTrue(a2.price == 2)
    def test_simulate_trade_mix_trades(self):
        a1 = AssetFundNetwork.Asset(price=1, daily_volume=1, symbol='a1')
        a2 = AssetFundNetwork.Asset(price=2, daily_volume=1, symbol='a2')
        f1 = Fund('f1', {'a1': 10}, 100, 1, 1)
        f2 = Fund('f2', {'a2': 10}, 100, 1, 1)
        mi_calc = MarketImpactCalculator()
        mi_calc.get_updated_price = MagicMock(return_value=1.5)

        network = AssetFundNetwork.AssetFundsNetwork(funds={
            'f1': f1,
            'f2': f2
        },
                                                     assets={
                                                         'a1': a1,
                                                         'a2': a2
                                                     },
                                                     mi_calc=mi_calc,
                                                     limit_trade_step=False)

        network.submit_sell_orders([Sell('a2', 2)])
        network.submit_buy_orders([Buy('a1', 2)])

        log = network.simulate_trade()
        calls = [call(2, a2, -1), call(2, a1, 1)]
        mi_calc.get_updated_price.assert_has_calls(calls, any_order=True)
        self.assertDictEqual({'a1': '1->1.5', 'a2': '2->1.5'}, log)
        self.assertFalse(network.buy_orders)
        self.assertFalse(network.sell_orders)
Esempio n. 9
0
 def dont_test_get_possible_defenses(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=10, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=4, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=7, daily_volume=2, symbol='a3')
     f1 = Fund('f1', {'a1': 10, 'a2': 10, 'a3': 10}, 100, 1, 1)
     f2 = Fund('f2', {'a1': 10}, 100, 1, 1)
     SysConfig.set("ORDER_SIZES", [0.5, 1])
     network = AssetFundNetwork.AssetFundsNetwork(
         funds={
             'f1': f1,
             'f2': f2
         },
         assets={
             'a1': a1,
             'a2': a2,
             'a3': a3
         },
         mi_calc=MockMarketImpactTestCalculator())
     actual_orders = get_possible_defenses(network, 10)
     expected_orders = []
     expected_orders.append(([Buy('a1', 5)], 5))
     expected_orders.append(([Buy('a1', 10)], 10))
     expected_orders.append(([Buy('a2', 2)], 4))
     expected_orders.append(([Buy('a2', 4)], 8))
     expected_orders.append(([Buy('a3', 1)], 7))
     expected_orders.append(([Buy('a1', 5), Buy('a2', 2)], 9))
     expected_orders.append(([], 0))
     self.assertEqual(actual_orders, expected_orders)
Esempio n. 10
0
 def test_filter_from_history(self):
     sell_action1 = Attack([Sell('a1', 1), Sell('a2', 1)], 10)
     sell_action2 = Attack([Sell('a1', 1), Sell('a3', 1)], 10)
     buy_action1 = Attack([Buy('a1', 1), Buy('a2', 1)], 10)
     buy_action2 = Attack([Buy('a2', 1)], 10)
     history = {BUY: {'a1': 2}, SELL: {'a1': 1, 'a2': 2}}
     self.assertTrue(
         ActionsManager._ActionsManager__filter_from_history(
             sell_action1, history, SELL))
     self.assertFalse(
         ActionsManager._ActionsManager__filter_from_history(
             sell_action2, history, SELL))
     self.assertTrue(
         ActionsManager._ActionsManager__filter_from_history(
             buy_action1, history, BUY))
     self.assertFalse(
         ActionsManager._ActionsManager__filter_from_history(
             buy_action2, history, BUY))
Esempio n. 11
0
 def test_get_defenses_in_budget(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=200, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=2, daily_volume=300, symbol='a3')
     assets = {'a1': a1, 'a2': a2, 'a3': a3}
     single_asset_orders = [Buy('a1', 10), Buy('a2', 20), Buy('a3', 30)]
     expected_defenses = [([Buy('a1', 10)], 10), ([Buy('a2', 20)], 40),
                          ([Buy('a3', 30)], 60),
                          ([Buy('a1', 10), Buy('a2', 20)], 50)]
     actual_defenses = ActionsManager._ActionsManager__get_defenses_in_budget(
         assets, single_asset_orders, lambda a: a.price, 60)
     self.assertListEqual(expected_defenses, actual_defenses)
Esempio n. 12
0
 def test_get_all_attacks(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=200, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=3, daily_volume=300, symbol='a3')
     assets = {'a1': a1, 'a2': a2, 'a3': a3}
     expected_attacks = [
         Attack([Sell('a1', 10)], 10),
         Attack([Sell('a2', 20)], 40),
         Attack([Sell('a3', 30)], 90),
         Attack([Sell('a1', 10), Buy('a2', 20)], 50),
         Attack([Sell('a1', 10), Buy('a3', 30)], 100),
         Attack([Sell('a2', 20), Buy('a3', 30)], 130),
         Attack(
             [Sell('a1', 10), Sell('a2', 20),
              Buy('a3', 30)], 140),
         Attack([], 0)
     ]
     mgr = ActionsManager(assets, 0.1)
     actual_attacks = mgr._ActionsManager__get_all_attacks(assets, 3)
     actual_attacks.sort(key=lambda a: a.cost)
     expected_attacks.sort(key=lambda a: a.cost)
     self.assertListEqual(actual_attacks, expected_attacks)
 def test_simulate_trade_limit_trade_step(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=1000, symbol='a1')
     f1 = Fund('f1', {'a1': 10}, 100, 1, 1)
     mi_calc = MarketImpactCalculator()
     mi_calc.get_updated_price = MagicMock(return_value=1.5)
     network = AssetFundNetwork.AssetFundsNetwork(funds={'f1': f1},
                                                  assets={'a1': a1},
                                                  mi_calc=mi_calc)
     SysConfig.set('TIME_STEP_MINUTES', 1)
     SysConfig.set('DAILY_PORTION_PER_MIN', 0.001)
     network.submit_buy_orders([Buy('a1', 2)])
     log = network.simulate_trade()
     self.assertDictEqual({'a1': '1->1.5'}, log)
     mi_calc.get_updated_price.assert_called_once_with(1, a1, 1)
     self.assertEqual(network.buy_orders['a1'], 1)
 def test_reset_books(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=1, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=1, symbol='a2')
     f1 = Fund('f1', {'a1': 10}, 100, 1, 1)
     f2 = Fund('f2', {'a2': 10}, 100, 1, 1)
     network = AssetFundNetwork.AssetFundsNetwork(
         funds={
             'f1': f1,
             'f2': f2
         },
         assets={
             'a1': a1,
             'a2': a2
         },
         mi_calc=MockMarketImpactTestCalculator(),
         limit_trade_step=True)
     network.submit_buy_orders([Buy('a1', 2)])
     network.submit_sell_orders([Sell('a1', 2)])
     self.assertTrue(network.sell_orders)
     self.assertTrue(network.buy_orders)
     network.reset_order_books()
     self.assertFalse(network.sell_orders)
     self.assertFalse(network.buy_orders)
Esempio n. 15
0
 def dont_test_get_possible_defenses_unit(self):
     a1 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a1')
     a2 = AssetFundNetwork.Asset(price=2, daily_volume=100, symbol='a2')
     a3 = AssetFundNetwork.Asset(price=3, daily_volume=100, symbol='a3')
     a4 = AssetFundNetwork.Asset(price=1, daily_volume=100, symbol='a4')
     f1 = Fund('f1', {'a1': 10, 'a2': 10, 'a3': 10}, 100, 1, 1)
     f2 = Fund('f2', {'a4': 10}, 100, 1, 1)
     network = AssetFundNetwork.AssetFundsNetwork(
         funds={
             'f1': f1,
             'f2': f2
         },
         assets={
             'a1': a1,
             'a2': a2,
             'a3': a3,
             'a4': a4
         },
         mi_calc=MockMarketImpactTestCalculator())
     actions_mgr = ActionsManager(network.assets, 0.1)
     actions_mgr.funds_under_risk = MagicMock(return_value=['f1'])
     actions_mgr.get_single_orders = MagicMock(
         return_value=[Buy('a1', 10),
                       Buy('a2', 10),
                       Buy('a3', 10)])
     expected_order_set = [[Buy('a1', 10)]]
     actions_mgr.get_defenses_in_budget = MagicMock(
         return_value=[(expected_order_set, 10)])
     history = {BUY: {'a1': 2}, SELL: {'a1': 1, 'a2': 2}}
     budget = 60
     actual_defenses = actions_mgr.get_possible_defenses(
         network, budget, history)
     self.assertListEqual(actual_defenses, [(expected_order_set, 10),
                                            ([], 0)])
     actions_mgr.funds_under_risk.assert_called_once_with(network)
     defense_assets = {
         'a2': a2,
         'a1': a1,
         'a3': a3,
     }
     actions_mgr.get_single_orders.assert_called_once_with(defense_assets)
     filtered_defenses = [Buy('a2', 10), Buy('a3', 10)]
     actions_mgr.get_defenses_in_budget.assert_called_once_with(
         defense_assets, filtered_defenses)
 def test_market_impact_buy_sqrt(self):
     calc = SqrtMarketImpactCalculator(0.5)
     order = Buy('a1', 10)
     a = Asset(price=2, daily_volume=1000, volatility=1.5, symbol='a1')
     mi = calc.get_market_impact(order, a, )
     npt.assert_almost_equal(0.075, mi, decimal=4)
 def test_market_impact_buy_order_exp(self):
     calc = ExponentialMarketImpactCalculator(2)
     order = Buy('a1', 10)
     a = Asset(price=2, daily_volume=100, volatility=1.5, symbol='a1')
     mi = calc.get_market_impact(order, a)
     npt.assert_almost_equal(1.2214, mi, decimal=4)
Esempio n. 18
0
    def gen_tree(self, ):
        sell = str([Sell('a1', 50)])
        buy = str([Buy('a1', 50)])
        nope = str([])
        sell_actions = [nope, sell]
        buy_actions = [nope, buy]
        root = {
            'name': 'root',
            'to_move': CHANCE,
            'actions': ['40', '30'],
            'inf_set': '.',
            'terminal': False
        }
        price_drop_log = "{'a1': '1->0.6'}"
        price_bump_log = "{'a1': '1->1.5'}"
        price_bump_log_06 = "{'a1': '0.6->1.5'}"
        empty_log = '{}'

        node_1_0 = self.fill_dict(name='node_1_0',
                                  to_move=ATTACKER,
                                  actions=sell_actions,
                                  history_assets_dict={
                                      BUY: {},
                                      SELL: {}
                                  },
                                  budget=Budget(attacker=50, defender=50),
                                  actions_history={
                                      BUY: [],
                                      SELL: [],
                                      SIM_TRADE: []
                                  },
                                  inf_set='.50.A_HISTORY:[]')

        node_1_0_0 = self.fill_dict(name='node_1_0_0',
                                    to_move=DEFENDER,
                                    actions=buy_actions,
                                    history_assets_dict={
                                        BUY: {},
                                        SELL: {
                                            'a1': 1
                                        }
                                    },
                                    budget=Budget(attacker=0, defender=50),
                                    actions_history={
                                        BUY: [],
                                        SELL: [sell],
                                        SIM_TRADE: []
                                    },
                                    inf_set='.50.D_HISTORY:[]')

        node_1_0_1 = self.fill_dict(name='node_1_0_1',
                                    to_move=DEFENDER,
                                    actions=buy_actions,
                                    history_assets_dict={
                                        BUY: {},
                                        SELL: {}
                                    },
                                    budget=Budget(attacker=50, defender=50),
                                    actions_history={
                                        BUY: [],
                                        SELL: [nope],
                                        SIM_TRADE: []
                                    },
                                    inf_set='.50.D_HISTORY:[]')

        node_1_0_1_0 = self.fill_dict(
            name='node_1_0_1_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {},
                SELL: {}
            },
            budget=Budget(attacker=50, defender=50),
            actions_history={
                BUY: [nope],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        node_1_0_1_1 = self.fill_dict(
            name='node_1_0_1_1',
            to_move=MARKET,
            actions=[price_bump_log],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=50, defender=0),
            actions_history={
                BUY: [buy],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{'a1': 50}.SELL:{}")

        node_1_0_1_1_0 = self.fill_dict(
            name='node_1_0_1_1_0',
            to_move=ATTACKER,
            actions=['[]'],
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope, price_drop_log],
                SELL: [sell, price_drop_log],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".0.A_HISTORY:['[Sell a1 50]', \"{'a1': '1->0.6'}\"]")

        node_1_0_1_1_0_0 = self.fill_dict(
            name='node_1_0_1_1_0_0',
            to_move=DEFENDER,
            actions=buy_actions,
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope, price_drop_log],
                SELL: [sell, price_drop_log, nope],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".50.D_HISTORY:['[]', \"{'a1': '1->0.6'}\"]")

        node_1_0_1_1_0_0_0 = self.fill_dict(
            name='node_1_0_1_1_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope, price_drop_log, nope],
                SELL: [sell, price_drop_log, nope],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".MARKET_HISTORY:[\"{'a1': '1->0.6'}\"].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        node_1_0_0_0 = self.fill_dict(
            name='node_1_0_0_0',
            to_move=MARKET,
            actions=[empty_log],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=0),
            actions_history={
                BUY: [buy],
                SELL: [sell],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{'a1': 50}.SELL:{'a1': 50}")

        node_1_0_0_1 = self.fill_dict(
            name='node_1_0_0_1',
            to_move=MARKET,
            actions=[price_drop_log],
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope],
                SELL: [sell],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{}.SELL:{'a1': 50}")

        node_1_0_0_1_0 = self.fill_dict(
            name='node_1_0_0_1_0',
            to_move=ATTACKER,
            actions=['[]'],
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope, price_drop_log],
                SELL: [sell, price_drop_log],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".0.A_HISTORY:['[Sell a1 50]', \"{'a1': '1->0.6'}\"]")

        node_1_0_0_1_0_0 = self.fill_dict(
            name='node_1_0_0_1_0_0',
            to_move=DEFENDER,
            actions=buy_actions,
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope, price_drop_log],
                SELL: [sell, price_drop_log, nope],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".50.D_HISTORY:['[]', \"{'a1': '1->0.6'}\"]")

        node_1_0_0_1_0_0_0 = self.fill_dict(
            name='node_1_0_0_1_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=50),
            actions_history={
                BUY: [nope, price_drop_log, nope],
                SELL: [sell, price_drop_log, nope],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".MARKET_HISTORY:[\"{'a1': '1->0.6'}\"].BUY:{}.SELL:{}",
            terminal=True,
            eval=-1)

        node_1_0_0_1_0_0_1 = self.fill_dict(
            name='node_1_0_0_1_0_0_1',
            to_move=MARKET,
            actions=["{'a1': '0.6->1.5'}"],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=20),
            actions_history={
                BUY: [nope, price_drop_log, buy],
                SELL: [sell, price_drop_log, nope],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=
            ".MARKET_HISTORY:[\"{'a1': '1->0.6'}\"].BUY:{'a1': 50}.SELL:{}")

        node_1_0_0_1_0_0_1_0 = self.fill_dict(
            name='node_1_0_0_1_0_0_1_0',
            to_move=ATTACKER,
            actions=['[]'],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=20),
            actions_history={
                BUY: [nope, price_drop_log, buy, price_bump_log_06],
                SELL: [sell, price_drop_log, nope, price_bump_log_06],
                SIM_TRADE: [price_drop_log, price_bump_log_06]
            },
            inf_set=
            ".0.A_HISTORY:['[Sell a1 50]', \"{'a1': '1->0.6'}\", '[]', \"{'a1': '0.6->1.5'}\"]"
        )

        node_1_0_0_1_0_0_1_0_0 = self.fill_dict(
            name='node_1_0_0_1_0_0_1_0_0',
            to_move=DEFENDER,
            actions=['[]'],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=20),
            actions_history={
                BUY: [nope, price_drop_log, buy, price_bump_log_06],
                SELL: [sell, price_drop_log, nope, price_bump_log_06, nope],
                SIM_TRADE: [price_drop_log, price_bump_log_06]
            },
            inf_set=
            ".20.0.D_HISTORY:['[]', \"{'a1': '1->0.6'}\", '[Buy a1 50]', \"{'a1': '0.6->1.5'}\"]"
        )

        node_1_0_0_1_0_0_1_0_0_0 = self.fill_dict(
            name='node_1_0_0_1_0_0_1_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=20),
            actions_history={
                BUY: [nope, price_drop_log, buy, price_bump_log_06, nope],
                SELL: [sell, price_drop_log, nope, price_bump_log_06, nope],
                SIM_TRADE: [price_drop_log, price_bump_log_06]
            },
            inf_set=
            ".MARKET_HISTORY:[\"{'a1': '1->0.6'}\", \"{'a1': '0.6->1.5'}\"].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        node_1_0_0_0_0 = self.fill_dict(
            name='node_1_0_0_0_0',
            to_move=ATTACKER,
            actions=['[]'],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=0),
            actions_history={
                BUY: [buy, empty_log],
                SELL: [sell, empty_log],
                SIM_TRADE: [empty_log]
            },
            inf_set=".0.A_HISTORY:['[Sell a1 50]', '{}']")

        node_1_0_0_0_0_0 = self.fill_dict(
            name='node_1_0_0_0_0_0',
            to_move=DEFENDER,
            actions=['[]'],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=0),
            actions_history={
                BUY: [buy, empty_log],
                SELL: [sell, empty_log, nope],
                SIM_TRADE: [empty_log]
            },
            inf_set=".0.D_HISTORY:['[Buy a1 50]', '{}']")

        node_1_0_0_0_0_0_0 = self.fill_dict(
            name='node_1_0_0_0_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            budget=Budget(attacker=0, defender=0),
            actions_history={
                BUY: [buy, empty_log, nope],
                SELL: [sell, empty_log, nope],
                SIM_TRADE: [empty_log]
            },
            inf_set=".MARKET_HISTORY:['{}'].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        ###########
        node_1_1 = self.fill_dict(name='node_1_1',
                                  to_move=ATTACKER,
                                  actions=[nope],
                                  history_assets_dict={
                                      BUY: {},
                                      SELL: {}
                                  },
                                  budget=Budget(attacker=30, defender=50),
                                  actions_history={
                                      BUY: [],
                                      SELL: [],
                                      SIM_TRADE: []
                                  },
                                  inf_set='.30.A_HISTORY:[]')

        node_1_1_0 = self.fill_dict(name='node_1_1_0',
                                    to_move=DEFENDER,
                                    actions=buy_actions,
                                    history_assets_dict={
                                        BUY: {},
                                        SELL: {}
                                    },
                                    budget=Budget(attacker=30, defender=50),
                                    actions_history={
                                        BUY: [],
                                        SELL: [nope],
                                        SIM_TRADE: []
                                    },
                                    inf_set='.50.D_HISTORY:[]')

        node_1_1_0_0 = self.fill_dict(
            name='node_1_1_0_0',
            to_move=MARKET,
            actions=[price_bump_log],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{'a1': 50}.SELL:{}")

        node_1_1_0_0_0 = self.fill_dict(
            name='node_1_1_0_0_0',
            to_move=ATTACKER,
            actions=[nope],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy, price_bump_log],
                SELL: [nope, price_bump_log],
                SIM_TRADE: [price_bump_log]
            },
            inf_set=".30.A_HISTORY:['[]', \"{'a1': '1->1.5'}\"]")

        node_1_1_0_0_0_0 = self.fill_dict(
            name='node_1_1_0_0_0_0',
            to_move=DEFENDER,
            actions=[nope],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy, price_bump_log],
                SELL: [nope, price_bump_log, nope],
                SIM_TRADE: [price_bump_log]
            },
            inf_set=".0.D_HISTORY:['[Buy a1 50]', \"{'a1': '1->1.5'}\"]")

        node_1_1_0_0_0_0_0 = self.fill_dict(
            name='node_1_1_0_0_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy, price_bump_log, nope],
                SELL: [nope, price_bump_log, nope],
                SIM_TRADE: [price_bump_log]
            },
            terminal=True,
            eval=0,
            inf_set=".MARKET_HISTORY:[\"{'a1': '1->1.5'}\"].BUY:{}.SELL:{}")

        node_1_1_0_1 = self.fill_dict(
            name='node_1_1_0_1',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {},
                SELL: {}
            },
            budget=Budget(attacker=30, defender=50),
            actions_history={
                BUY: [nope],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        ##########

        root['children'] = {'50': node_1_0, '30': node_1_1}
        node_1_0['children'] = {sell: node_1_0_0, nope: node_1_0_1}
        node_1_0_0['children'] = {buy: node_1_0_0_0, nope: node_1_0_0_1}
        node_1_0_1['children'] = {nope: node_1_0_1_0, buy: node_1_0_1_1}
        node_1_0_0_0['children'] = {empty_log: node_1_0_0_0_0}
        node_1_0_0_1['children'] = {price_drop_log: node_1_0_0_1_0}
        node_1_0_0_0_0['children'] = {nope: node_1_0_0_0_0_0}
        node_1_0_0_0_0_0['children'] = {nope: node_1_0_0_0_0_0_0}
        node_1_0_0_0_0_0_0['children'] = {}
        node_1_0_1_0['children'] = {}
        node_1_0_1_1['children'] = {price_bump_log: node_1_0_1_1_0}
        node_1_0_0_1_0['children'] = {nope: node_1_0_0_1_0_0}
        node_1_1['children'] = {nope: node_1_1_0}
        node_1_1_0['children'] = {buy: node_1_1_0_0, nope: node_1_1_0_1}
        node_1_1_0_0['children'] = {price_bump_log: node_1_1_0_0_0}
        node_1_1_0_0_0['children'] = {nope: node_1_1_0_0_0_0}
        node_1_1_0_0_0_0['children'] = {nope: node_1_1_0_0_0_0_0}
        node_1_1_0_0_0_0_0['children'] = {}
        node_1_1_0_1['children'] = {}
        node_1_0_0_1_0_0['children'] = {
            nope: node_1_0_0_1_0_0_0,
            buy: node_1_0_0_1_0_0_1
        }
        node_1_0_0_1_0_0_0['children'] = {}
        node_1_0_0_1_0_0_1['children'] = {
            price_bump_log_06: node_1_0_0_1_0_0_1_0
        }
        node_1_0_0_1_0_0_1_0['children'] = {nope: node_1_0_0_1_0_0_1_0_0}
        node_1_0_0_1_0_0_1_0_0['children'] = {nope: node_1_0_0_1_0_0_1_0_0_0}
        node_1_0_0_1_0_0_1_0_0_0['children'] = {}
        return root
Esempio n. 19
0
def gen_buy_order(asset, size):
    return Buy(asset.symbol, int(floor(size * asset.daily_volume)))
 def test_updated_price_buy_sqrt(self):
     calc = SqrtMarketImpactCalculator(0.5)
     order = Buy('a1', 10)
     a = Asset(price=2, daily_volume=1000, volatility=1.5, symbol='a1')
     mi = calc.get_updated_price(order.num_shares, a, 1)
     npt.assert_almost_equal(2.075, mi, decimal=4)
    def gen_tree(self, ):
        sell_order = Sell('a1', 50)
        sell = str([sell_order])
        buy = str([Buy('a1', 50)])
        nope = str([])
        buy_actions = [nope, buy]
        root = {
            'tree_size': 8,
            'to_move': CHANCE,
            'actions': ['p1', 'p2'],
            'inf_set': '.',
            'terminal': False
        }
        price_drop_log = "{'a1': '1->0.5'}"
        empty_log = '{}'

        node_1_0 = self.fill_dict(tree_size=6,
                                  to_move=ATTACKER,
                                  actions=[sell],
                                  history_assets_dict={
                                      BUY: {},
                                      SELL: {}
                                  },
                                  players_info=PlayersHiddenInfo(
                                      attacker_attack=[sell_order],
                                      attacker_pid='p2',
                                      defender_budget=50),
                                  actions_history={
                                      BUY: [],
                                      SELL: [],
                                      SIM_TRADE: []
                                  },
                                  inf_set='.p2.A_HISTORY:[]',
                                  terminal=False,
                                  eval=None)

        node_1_0_0 = self.fill_dict(tree_size=5,
                                    to_move=DEFENDER,
                                    actions=buy_actions,
                                    history_assets_dict={
                                        BUY: {},
                                        SELL: {
                                            'a1': 1
                                        }
                                    },
                                    players_info=PlayersHiddenInfo(
                                        attacker_attack=[],
                                        attacker_pid='p2',
                                        defender_budget=50),
                                    actions_history={
                                        BUY: [],
                                        SELL: [sell],
                                        SIM_TRADE: []
                                    },
                                    inf_set='.50.D_HISTORY:[]',
                                    terminal=False,
                                    eval=None)

        node_1_0_0_0 = self.fill_dict(
            tree_size=2,
            to_move=MARKET,
            actions=[empty_log],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            players_info=PlayersHiddenInfo(attacker_attack=[],
                                           attacker_pid='p2',
                                           defender_budget=0),
            actions_history={
                BUY: [buy],
                SELL: [sell],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{'a1': 50}.SELL:{'a1': 50}",
            terminal=False,
            eval=None)

        node_1_0_0_1 = self.fill_dict(
            tree_size=2,
            to_move=MARKET,
            actions=[price_drop_log],
            history_assets_dict={
                BUY: {},
                SELL: {
                    'a1': 1
                }
            },
            players_info=PlayersHiddenInfo(attacker_attack=[],
                                           attacker_pid='p2',
                                           defender_budget=50),
            actions_history={
                BUY: [nope],
                SELL: [sell],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{}.SELL:{'a1': 50}",
            terminal=False,
            eval=None)

        node_1_0_0_0_0 = self.fill_dict(
            tree_size=1,
            terminal=True,
            eval=0,
            to_move=ATTACKER,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            players_info=PlayersHiddenInfo(attacker_attack=[],
                                           attacker_pid='p2',
                                           defender_budget=0),
            actions_history={
                BUY: [buy, empty_log],
                SELL: [sell, empty_log],
                SIM_TRADE: [empty_log]
            },
            inf_set=".p2.A_HISTORY:['[Sell a1 50]', '{}']")

        node_1_0_0_1_0 = self.fill_dict(
            tree_size=1,
            terminal=True,
            eval=-1,
            to_move=ATTACKER,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {
                    'a1': 1
                }
            },
            players_info=PlayersHiddenInfo(attacker_attack=[],
                                           attacker_pid='p2',
                                           defender_budget=50),
            actions_history={
                BUY: [nope, price_drop_log],
                SELL: [sell, price_drop_log],
                SIM_TRADE: [price_drop_log]
            },
            inf_set=".p2.A_HISTORY:['[Sell a1 50]', \"{'a1': '1->0.5'}\"]")

        ###########
        node_1_1 = self.fill_dict(tree_size=1,
                                  terminal=True,
                                  eval=0,
                                  to_move=ATTACKER,
                                  actions=[],
                                  history_assets_dict={
                                      BUY: {},
                                      SELL: {}
                                  },
                                  players_info=PlayersHiddenInfo(
                                      attacker_attack=[],
                                      attacker_pid='p1',
                                      defender_budget=50),
                                  actions_history={
                                      BUY: [],
                                      SELL: [],
                                      SIM_TRADE: []
                                  },
                                  inf_set='.p1.A_HISTORY:[]')

        ##########

        root['children'] = {'p2': node_1_0, 'p1': node_1_1}
        node_1_0['children'] = {sell: node_1_0_0}
        node_1_0_0['children'] = {buy: node_1_0_0_0, nope: node_1_0_0_1}
        node_1_0_0_0['children'] = {empty_log: node_1_0_0_0_0}
        node_1_0_0_1['children'] = {price_drop_log: node_1_0_0_1_0}
        node_1_0_0_0_0['children'] = {}
        node_1_0_0_1_0['children'] = {}
        node_1_1['children'] = {}
        return root
    def gen_tree(self, ):
        buy = str([Buy('a1', 50)])
        nope = str([])
        buy_actions = [nope, buy]
        root = {
            'tree_size': 15,
            'name': 'root',
            'to_move': CHANCE,
            'actions': ['40', '30'],
            'inf_set': '.',
            'terminal': False
        }
        price_bump_log = "{'a1': '1->1.5'}"

        node_1_0 = self.fill_dict(tree_size=7,
                                  name='node_1_0',
                                  to_move=ATTACKER,
                                  actions=[nope],
                                  history_assets_dict={
                                      BUY: {},
                                      SELL: {}
                                  },
                                  budget=Budget(attacker=40, defender=50),
                                  actions_history={
                                      BUY: [],
                                      SELL: [],
                                      SIM_TRADE: []
                                  },
                                  inf_set='.40.A_HISTORY:[]')

        node_1_0_0 = self.fill_dict(tree_size=6,
                                    name='node_1_0_0',
                                    to_move=DEFENDER,
                                    actions=buy_actions,
                                    history_assets_dict={
                                        BUY: {},
                                        SELL: {}
                                    },
                                    budget=Budget(attacker=40, defender=50),
                                    actions_history={
                                        BUY: [],
                                        SELL: [nope],
                                        SIM_TRADE: []
                                    },
                                    inf_set='.50.D_HISTORY:[]')

        node_1_0_0_0 = self.fill_dict(
            tree_size=4,
            name='node_1_0_0_0',
            to_move=MARKET,
            actions=[price_bump_log],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=40, defender=0),
            actions_history={
                BUY: [buy],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{'a1': 50}.SELL:{}")

        node_1_0_0_0_0 = self.fill_dict(
            tree_size=3,
            name='node_1_0_0_0_0',
            to_move=ATTACKER,
            actions=[nope],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=40, defender=0),
            actions_history={
                BUY: [buy, price_bump_log],
                SELL: [nope, price_bump_log],
                SIM_TRADE: [price_bump_log]
            },
            inf_set=".40.A_HISTORY:['[]', \"{'a1': '1->1.5'}\"]")

        node_1_0_0_0_0_0 = self.fill_dict(
            tree_size=2,
            name='node_1_0_0_0_0_0',
            to_move=DEFENDER,
            actions=[nope],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=40, defender=0),
            actions_history={
                BUY: [buy, price_bump_log],
                SELL: [nope, price_bump_log, nope],
                SIM_TRADE: [price_bump_log]
            },
            inf_set=".0.D_HISTORY:['[Buy a1 50]', \"{'a1': '1->1.5'}\"]")

        node_1_0_0_0_0_0_0 = self.fill_dict(
            tree_size=1,
            name='node_1_0_0_0_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=40, defender=0),
            actions_history={
                BUY: [buy, price_bump_log, nope],
                SELL: [nope, price_bump_log, nope],
                SIM_TRADE: [price_bump_log]
            },
            terminal=True,
            eval=0,
            inf_set=".MARKET_HISTORY:[\"{'a1': '1->1.5'}\"].BUY:{}.SELL:{}")

        node_1_0_0_1 = self.fill_dict(
            tree_size=1,
            name='node_1_0_0_1',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {},
                SELL: {}
            },
            budget=Budget(attacker=40, defender=50),
            actions_history={
                BUY: [nope],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        ###########
        node_1_1 = self.fill_dict(tree_size=7,
                                  name='node_1_1',
                                  to_move=ATTACKER,
                                  actions=[nope],
                                  history_assets_dict={
                                      BUY: {},
                                      SELL: {}
                                  },
                                  budget=Budget(attacker=30, defender=50),
                                  actions_history={
                                      BUY: [],
                                      SELL: [],
                                      SIM_TRADE: []
                                  },
                                  inf_set='.30.A_HISTORY:[]')

        node_1_1_0 = self.fill_dict(tree_size=6,
                                    name='node_1_1_0',
                                    to_move=DEFENDER,
                                    actions=buy_actions,
                                    history_assets_dict={
                                        BUY: {},
                                        SELL: {}
                                    },
                                    budget=Budget(attacker=30, defender=50),
                                    actions_history={
                                        BUY: [],
                                        SELL: [nope],
                                        SIM_TRADE: []
                                    },
                                    inf_set='.50.D_HISTORY:[]')

        node_1_1_0_0 = self.fill_dict(
            tree_size=4,
            name='node_1_1_0_0',
            to_move=MARKET,
            actions=[price_bump_log],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{'a1': 50}.SELL:{}")

        node_1_1_0_0_0 = self.fill_dict(
            tree_size=3,
            name='node_1_1_0_0_0',
            to_move=ATTACKER,
            actions=[nope],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy, price_bump_log],
                SELL: [nope, price_bump_log],
                SIM_TRADE: [price_bump_log]
            },
            inf_set=".30.A_HISTORY:['[]', \"{'a1': '1->1.5'}\"]")

        node_1_1_0_0_0_0 = self.fill_dict(
            tree_size=2,
            name='node_1_1_0_0_0_0',
            to_move=DEFENDER,
            actions=[nope],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy, price_bump_log],
                SELL: [nope, price_bump_log, nope],
                SIM_TRADE: [price_bump_log]
            },
            inf_set=".0.D_HISTORY:['[Buy a1 50]', \"{'a1': '1->1.5'}\"]")

        node_1_1_0_0_0_0_0 = self.fill_dict(
            tree_size=1,
            name='node_1_1_0_0_0_0_0',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {
                    'a1': 1
                },
                SELL: {}
            },
            budget=Budget(attacker=30, defender=0),
            actions_history={
                BUY: [buy, price_bump_log, nope],
                SELL: [nope, price_bump_log, nope],
                SIM_TRADE: [price_bump_log]
            },
            terminal=True,
            eval=0,
            inf_set=".MARKET_HISTORY:[\"{'a1': '1->1.5'}\"].BUY:{}.SELL:{}")

        node_1_1_0_1 = self.fill_dict(
            tree_size=1,
            name='node_1_1_0_1',
            to_move=MARKET,
            actions=[],
            history_assets_dict={
                BUY: {},
                SELL: {}
            },
            budget=Budget(attacker=30, defender=50),
            actions_history={
                BUY: [nope],
                SELL: [nope],
                SIM_TRADE: []
            },
            inf_set=".MARKET_HISTORY:[].BUY:{}.SELL:{}",
            terminal=True,
            eval=0)

        ##########

        root['children'] = {'40': node_1_0, '30': node_1_1}

        node_1_0['children'] = {nope: node_1_0_0}
        node_1_0_0['children'] = {buy: node_1_0_0_0, nope: node_1_0_0_1}
        node_1_0_0_0['children'] = {price_bump_log: node_1_0_0_0_0}
        node_1_0_0_0_0['children'] = {nope: node_1_0_0_0_0_0}
        node_1_0_0_0_0_0['children'] = {nope: node_1_0_0_0_0_0_0}
        node_1_0_0_0_0_0_0['children'] = {}
        node_1_0_0_1['children'] = {}

        node_1_1['children'] = {nope: node_1_1_0}
        node_1_1_0['children'] = {buy: node_1_1_0_0, nope: node_1_1_0_1}
        node_1_1_0_0['children'] = {price_bump_log: node_1_1_0_0_0}
        node_1_1_0_0_0['children'] = {nope: node_1_1_0_0_0_0}
        node_1_1_0_0_0_0['children'] = {nope: node_1_1_0_0_0_0_0}
        node_1_1_0_0_0_0_0['children'] = {}
        node_1_1_0_1['children'] = {}
        return root