# ============================================================================= logger.info ( 'Test for histogtram fits') # ============================================================================= ## make simple test mass2 = ROOT.RooRealVar ( 'test_mass2' , 'Some test mass' , 0 , 10 ) x = mass2 ## book very simple data set varset2 = ROOT.RooArgSet ( mass2 ) import Ostap.FitModels as Models events = 50000 logger.debug('Make a test data using Gamma-Distribution') m_gamma0 = Models.GammaDist_pdf( 'GD0' , x ) m_gamma0.k .setVal( 2 ) m_gamma0.theta.setVal( 2 ) dataset2 = m_gamma0.pdf.generate ( varset2 , events ) # ## h1 = ROOT.TH1D ( hID() , '' , 10 , 0 , 10 ) ; h1.Sumw2() h2 = ROOT.TH1D ( hID() , '' , 20 , 0 , 10 ) ; h2.Sumw2() h3 = ROOT.TH1D ( hID() , '' , 100 , 10 , 10 ) ; h3.Sumw2() random.seed(10) bins = [ 0 ] for i in range(0, 9 ) : bins.append ( random.uniform ( 0 , 10 ) )
else: logger = getLogger(__name__) logger.info('Create 1D dataset for Ostap Tutorial ') # ============================================================================ RAD = ROOT.RooAbsData if RAD.Tree != RAD.getDefaultStorageType(): logger.info('DEFINE default storage type to be TTree! ') RAD.setDefaultStorageType(RAD.Tree) # ============================================================================ x = ROOT.RooRealVar('x', 'x', 0, 10) varset = ROOT.RooArgSet(x) import Ostap.FitModels as Models gamma = Models.GammaDist_pdf('GPDF', x) gamma.k.setVal(2) gamma.theta.setVal(1) data = gamma.pdf.generate(varset, 100000) h1 = x.histo(100) h2 = x.histo(500) h3 = h1_axis([0, 1, 2, 3, 6, 8, 10]) data.project(h1, 'x') data.project(h2, 'x') data.project(h3, 'x') h4 = h1_axis(h2.equal_edges(5)) h5 = h1_axis(h2.equal_edges(10))