"https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data", header=None) X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.fit_transform(X_test) #---------------------------------------------- lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) lr = LogisticRegression() lr.fit(X_train_lda, y_train) #plot_decision_regions(X_train_lda, y_train, classifier=lr) #plt.xlabel('LD1') #plt.ylabel('LD2') #plt.legend(loc='lower left') #plt.show() X_test_lda = lda.fit_transform(X_test_std, y_test) lr.fit(X_test_lda, y_test) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD1') plt.ylabel('LD2') plt.legend(loc='lower left') plt.show()
iris = datasets.load_iris() X = iris.data[:, [2, 3]] y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) X_combined = np.vstack((X_train, X_test)) #---------------------------------------------------------- forest = RandomForestClassifier(criterion="entropy", n_estimators=10, random_state=0, n_jobs=2) forest.fit(X_train, y_train) plot_decision_regions(X_combined, y_combined, classifier=forest, test_idx=range(105, 150)) plt.xlabel("petal length") plt.ylabel("petal width") plt.legend(loc="upper left") plt.show()
df_wine = pd.read_csv( "https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data", header=None) X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.fit_transform(X_test) #------------------------------------------------------------------------ pca = PCA(n_components=2, whiten=False) lr = LogisticRegression() X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.fit_transform(X_test_std) lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend(loc='lower left') plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend(loc='lower left') plt.show()
from sklearn.svm import SVC import numpy as np import pandas as pd import matplotlib.pyplot as plt from P049 import plot_decision_regions np.random.seed(0) X_xor = np.random.randn(200, 2) y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0) y_xor = np.where(y_xor, 1, -1) #------------------------------------ svm = SVC(kernel="rbf", random_state=0, gamma=0.1, C=10.0) svm.fit(X_xor, y_xor) plot_decision_regions(X_xor, y_xor, classifier=svm) plt.legend(loc="upper left") plt.show()