def start_kmeans(args): imlist = imtools.get_imlist(args.data_dir) imnbr = len(imlist) # get the number of images print("The number of images is %d" % imnbr) # Create matrix to store all flattened images immatrix = np.array([np.array(cv2.imread(imname)).flatten() for imname in imlist], 'f') # PCA reduce dimension V, S, immean = pca.pca(immatrix) immatrix = np.array([np.array(cv2.imread(im)).flatten() for im in imlist]) immatrix_src = np.array([np.array(cv2.imread(im)) for im in imlist]) # project on the 40 first PCs immean = immean.flatten() projected = np.array([dot(V[:40], immatrix[i] - immean) for i in range(imnbr)]) # k-means projected = whiten(projected) centroids, distortion = kmeans(projected, args.num_class) code, distance = vq(projected, centroids) output_path = os.path.join(args.output_dir, 'kmeans_result') if not os.path.exists(output_path): os.mkdir(output_path) # plot clusters for k in range(args.num_class): ind = where(code == k)[0] print("class:", k, len(ind)) os.mkdir(os.path.join(output_path, str(k))) i = rdm.randint(0,len(ind)) cv2.imwrite(os.path.join(os.path.join(output_path, str(k)), str(i) + '.jpg'), immatrix_src[ind[i]])
def save_vis(filename_list, number_list, pred_pca, output_hcluster, output_PCA): imlist = filename_list imnbr = len(imlist) # Load images, run PCA. immatrix = array(pred_pca) V, S, immean = pca.pca(immatrix) # Project on 2 PCs. projected = array([dot(V[[0, 1]], immatrix[i] - immean) for i in range(imnbr)]) # height and width h, w = 1200, 1200 # create a new image with a white background img = Image.new('RGB', (w, h), (255, 255, 255)) draw = ImageDraw.Draw(img) # draw axis draw.line((0, h/2, w, h/2), fill=(255, 0, 0)) draw.line((w/2, 0, w/2, h), fill=(255, 0, 0)) # scale coordinates to fit scale = abs(projected).max(0) scaled = floor(array([(p/scale) * (w/2 - 20, h/2 - 20) + (w/2, h/2) for p in projected])).astype(int) # paste thumbnail of each image for i in range(imnbr): nodeim = Image.open(imlist[i]) nodeim.thumbnail((25, 25)) ns = nodeim.size box = (scaled[i][0] - ns[0] // 2, scaled[i][1] - ns[1] // 2, scaled[i][0] + ns[0] // 2 + 1, scaled[i][1] + ns[1] // 2 + 1) img.paste(nodeim, box) tree = hcluster.hcluster(projected) hcluster.draw_dendrogram(tree,imlist,filename=output_hcluster) for i, num in enumerate(number_list): if num < 8: color1 = mod(370*num,255) color2 = mod(170*num,255) color3 = mod(270*num,255) draw.text((scaled[i][0],scaled[i][1]),str(num),fill = (color1,color2,color3)) else: draw.text((scaled[i][0],scaled[i][1]),str(num),fill = (255,0,0)) figure() imshow(img) axis('off') img.save(output_PCA) show()
def inference(mnist): x = tf.placeholder(dtype=tf.float32, shape=[None, 784]) x_image = tf.reshape(x, [-1, 28, 28, 1]) global_step = tf.Variable(0, trainable=False) W_conv1 = weight_variable([3, 3, 1, 128]) b_conv1 = bias_variable([128]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([3, 3, 128, 100]) b_conv2 = bias_variable([100]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # W_conv3 = weight_variable([3, 3, 128, 64]) # b_conv3 = bias_variable([64]) # h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3) # h_pool3 = max_pool_2x2(h_conv3) # W_conv4 = weight_variable([5, 5, 64, 32]) # b_conv4 = bias_variable([32]) # h_conv4 = tf.nn.relu(conv2d(h_pool3, W_conv4) + b_conv4) # h_pool4 = max_pool_2x2(h_conv4) h_pool4_flat = tf.reshape(h_pool2, [-1, 7*7*100]) # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.4) # config = tf.ConfigProto(gpu_options=gpu_options) # config.gpu_options.allow_growth = True with tf.Session() as sess: tf.global_variables_initializer().run() xs = mnist.test.images ys = mnist.test.labels extract_features = sess.run(h_pool4_flat, feed_dict={x: xs}) print(extract_features.shape) V, S, immean = pca.pca(extract_features) immean = immean.flatten() imnbr = 10000 projected = array([dot(V[:32], extract_features[i] - immean) for i in range(imnbr)]) centroids, distortion = kmeans(projected, 20) code, distance = vq(projected, centroids) tools.calculate_acc(code, ys, 10, 20) return extract_features
def main(args): print(args) # 根据指定总帧数和间隔抽取帧 frames, frame_ids = get_frames(args.input, args.frame_num, args.frame_interval, args.max_size) print(len(frames), len(frame_ids), frames[0].shape) immatrix = np.array([x.flatten() for x in frames]).astype(np.float32) print(immatrix.shape) # PCA降维 V, S, immean = pca.pca(immatrix) print(V.shape, S.shape, immean.shape) imnbr = len(frames) projected = np.array([np.dot(V[:40],immatrix[i]-immean) for i in range(imnbr)]) # k-means projected = whiten(projected) print(projected.shape, type(projected)) centroids,distortion = kmeans(projected, args.key_frame_num) code,distance = vq(projected,centroids) print(code.shape, distance.shape) print(code) print(distance) # 使用Kmeans进行聚类 # kmeans = KMeans(n_clusters=args.key_frame_num, random_state=0).fit(np.array(frames)) centers = [] clusters = [[] for i in range(args.key_frame_num)] ids = [[] for i in range(args.key_frame_num)] for i in range(len(frames)): clusters[code[i]].append(distance[i]) ids[code[i]].append(i) print(ids) print(clusters) for i in range(args.key_frame_num): index = np.argsort(clusters[i]) j = index[0] print(index) index = ids[i][j] print(index) centers.append((frames[index], index)) if not os.path.isdir(args.out_dir): os.makedirs(args.out_dir) basename = os.path.basename(args.input) for i, (frame, index) in enumerate(centers): cv2.imwrite(os.path.join(args.out_dir, basename + '_%d_%d.jpg' % (index,i)), frame)
# -*- coding: utf-8 -*- from PCV.tools import imtools, pca from PIL import Image, ImageDraw from pylab import * imlist = imtools.get_imlist('../data/selectedfontimages/a_selected_thumbs') imnbr = len(imlist) # Load images, run PCA. immatrix = array([array(Image.open(im)).flatten() for im in imlist], 'f') V, S, immean = pca.pca(immatrix) # Project on 2 PCs. projected = array([dot(V[[0, 1]], immatrix[i] - immean) for i in range(imnbr)]) # P131 Fig6-3左图 #projected = array([dot(V[[1, 2]], immatrix[i] - immean) for i in range(imnbr)]) # P131 Fig6-3右图 # height and width h, w = 1200, 1200 # create a new image with a white background img = Image.new('RGB', (w, h), (255, 255, 255)) draw = ImageDraw.Draw(img) # draw axis draw.line((0, h/2, w, h/2), fill=(255, 0, 0)) draw.line((w/2, 0, w/2, h), fill=(255, 0, 0)) # scale coordinates to fit scale = abs(projected).max(0) scaled = floor(array([(p/scale) * (w/2 - 20, h/2 - 20) + (w/2, h/2) for p in projected])).astype(int)
# -*- coding: utf-8 -*- from PCV.tools import imtools, pca from PIL import Image, ImageDraw from pylab import * from scipy.cluster.vq import * imlist = imtools.get_imlist('tmp/test/') imnbr = len(imlist) # Load images, run PCA. immatrix = array([array(Image.open(im)).flatten() for im in imlist], 'f') V, S, immean = pca.pca(immatrix) projected = array([dot(V[[0, 1]], immatrix[i] - immean) for i in range(imnbr)]) n = len(projected) # compute distance matrix S = array([[sqrt(sum((projected[i] - projected[j])**2)) for i in range(n)] for j in range(n)], 'f') # create Laplacian matrix rowsum = sum(S, axis=0) D = diag(1 / sqrt(rowsum)) I = identity(n) L = I - dot(D, dot(S, D)) # compute eigenvectors of L U, sigma, V = linalg.svd(L) k = 20 # create feature vector from k first eigenvectors # by stacking eigenvectors as columns features = array(V[:k]).T # k-means
def PCA_Kmeans(train_path,result_path): # Uses sparse pca codepath. # imlist = imtools.get_imlist('C:/Users/Zqc/Desktop/PCV-book-data/data/selectedfontimages/a_selected_thumbs/') # falter_image("D:/datebase/test") imlist = imtools.get_imlist(train_path) # print(imlist) # 获取图像列表和他们的尺寸 im = array(Image.open(imlist[0])) # open one image to get the size m, n = im.shape[:2] # get the size of the images imnbr = len(imlist) # get the number of images print("The number of images is %d" % imnbr) # Create matrix to store all flattened images immatrix = array([array(Image.open(imname)).flatten() for imname in imlist], 'f') # PCA降维 V, S, immean = pca.pca(immatrix) # 保存均值和主成分 # f = open('./a_pca_modes.pkl', 'wb') # f = open('C:/Users/Zqc/Desktop/PCV-book-data/data/selectedfontimages/a_pca_modes.pkl', 'wb') f = open(train_path + "\\a_pca_modes.pkl", 'wb') pickle.dump(immean, f) pickle.dump(V, f) f.close() # get list of images # imlist = imtools.get_imlist('C:/Users/Zqc/Desktop/PCV-book-data/data/selectedfontimages/a_selected_thumbs/') print("go") imlist = imtools.get_imlist(train_path) imnbr = len(imlist) # load model file # with open('C:/Users/Zqc/Desktop/PCV-book-data/data/selectedfontimages/a_pca_modes.pkl','rb') as f: with open(train_path + "a_pca_modes.pkl", 'rb') as f: immean = pickle.load(f) V = pickle.load(f) # create matrix to store all flattened images immatrix = array([array(Image.open(im)).flatten() for im in imlist], 'f') # project on the 40 first PCs immean = immean.flatten() projected = array([dot(V[:30], immatrix[i] - immean) for i in range(imnbr)]) print("PCA") # k-means projected = whiten(projected) centroids, distortion = kmeans(projected, 370) code, distance = vq(projected, centroids) filepath = result_path # plot clusters for k in range(370): tempath = filepath + str(k) os.makedirs(tempath) ind = where(code == k)[0] for i in range(len(ind)): io.imsave(tempath + "\\" + str(i) + ".png", immatrix[ind[i]].reshape((100, 100)).astype(np.uint8), cmap="gray")
print 'training data is:', features.shape, len(labels) # read test data #################### test_features,test_labels = read_gesture_features_labels('../data/hand_gesture/test/') print 'test data is:', test_features.shape, len(test_labels) classnames = unique(labels) nbr_classes = len(classnames) if False: # reduce dimensions with PCA from PCV.tools import pca V,S,m = pca.pca(features) # keep most important dimensions V = V[:50] features = array([dot(V,f-m) for f in features]) test_features = array([dot(V,f-m) for f in test_features]) if True: # test kNN k = 1 knn_classifier = knn.KnnClassifier(labels,features) res = array([knn_classifier.classify(test_features[i],k) for i in range(len(test_labels))]) # TODO kan goras battre if False:
print 'training data is:', features.shape, len(labels) # read test data #################### test_features, test_labels = read_gesture_features_labels( '../data/hand_gesture/test/') print 'test data is:', test_features.shape, len(test_labels) classnames = unique(labels) nbr_classes = len(classnames) if False: # reduce dimensions with PCA from PCV.tools import pca V, S, m = pca.pca(features) # keep most important dimensions V = V[:50] features = array([dot(V, f - m) for f in features]) test_features = array([dot(V, f - m) for f in test_features]) if True: # test kNN k = 1 knn_classifier = knn.KnnClassifier(labels, features) res = array([ knn_classifier.classify(test_features[i], k) for i in range(len(test_labels)) ]) # TODO kan goras battre
else: temp = "%d: None" % (j) str += temp + "| " summ += max_count if step % 1000 == 0: print("in cluster %d:" % i) print(str + "|| MAX PERCENT: %d: %g of %d" % (f, ma, len(part))) print("TOTAL ACC %g" % (summ/len(label))) mnist = input_data.read_data_sets("mnist_data", one_hot=False) xs = mnist.test.images ys = mnist.test.labels V, S, immean = pca.pca(xs) f = open('./mnist_test_pca_modes.pkl', 'wb') pickle.dump(immean, f) pickle.dump(V, f) f.close() immean = immean.flatten() imnbr = 10000 projected = array([dot(V[:32], xs[i]-immean) for i in range(imnbr)]) # k-means projected = whiten(projected) centroids, distortion = kmeans(projected, 15)