Esempio n. 1
0
    def __init__(self, p1, operation1, magnitude_idx1, p2, operation2,
                 magnitude_idx2):
        ranges = {
            "shearX": np.linspace(0, 0.3, 10),
            "shearY": np.linspace(0, 0.3, 10),
            "translateX": np.linspace(0, 150 / 331, 10),
            "translateY": np.linspace(0, 150 / 331, 10),
            "rotate": np.linspace(0, 30, 10),
            "color": np.linspace(0.0, 0.9, 10),
            "posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
            "solarize": np.linspace(256, 0, 10),
            "contrast": np.linspace(0.0, 0.9, 10),
            "sharpness": np.linspace(0.0, 0.9, 10),
            "brightness": np.linspace(0.0, 0.9, 10),
            "autocontrast": [0] * 10,
            "equalize": [0] * 10,
            "invert": [0] * 10
        }

        func = {
            "shearX":
            lambda img, magnitude: img.transform(img.size,
                                                 Image.AFFINE,
                                                 (1, magnitude * random.choice(
                                                     [-1, 1]), 0, 0, 1, 0),
                                                 Image.BICUBIC,
                                                 fillcolor=(128, 128, 128)),
            "shearY":
            lambda img, magnitude: img.transform(img.size,
                                                 Image.AFFINE,
                                                 (1, 0, 0, magnitude * random.
                                                  choice([-1, 1]), 1, 0),
                                                 Image.BICUBIC,
                                                 fillcolor=(128, 128, 128)),
            "translateX":
            lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice(
                    [-1, 1]), 0, 1, 0),
                fillcolor=(128, 128, 128)),
            "translateY":
            lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.
                               choice([-1, 1])),
                fillcolor=(128, 128, 128)),
            "rotate":
            lambda img, magnitude: img.rotate(magnitude * random.choice(
                [-1, 1])),
            "color":
            lambda img, magnitude: ImageEnhance.Color(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "posterize":
            lambda img, magnitude: ImageOps.posterize(img, magnitude),
            "solarize":
            lambda img, magnitude: ImageOps.solarize(img, magnitude),
            "contrast":
            lambda img, magnitude: ImageEnhance.Contrast(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "sharpness":
            lambda img, magnitude: ImageEnhance.Sharpness(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "brightness":
            lambda img, magnitude: ImageEnhance.Brightness(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "autocontrast":
            lambda img, magnitude: ImageOps.autocontrast(img),
            "equalize":
            lambda img, magnitude: ImageOps.equalize(img),
            "invert":
            lambda img, magnitude: ImageOps.invert(img)
        }

        # self.name = "{}_{:.2f}_and_{}_{:.2f}".format(
        #     operation1, ranges[operation1][magnitude_idx1],
        #     operation2, ranges[operation2][magnitude_idx2])
        self.p1 = p1
        self.operation1 = func[operation1]
        self.magnitude1 = ranges[operation1][magnitude_idx1]
        self.p2 = p2
        self.operation2 = func[operation2]
        self.magnitude2 = ranges[operation2][magnitude_idx2]
Esempio n. 2
0
def generate(tiles, mask, offset):
    """
        Generate a giant tiled image to certain specs
    """
    # each image will be 48px square - why that size? because some images were
    # saved out at that resolution (anything ending *normal without extension)
    # giving a total image size of a fairly manageable 15,216px square
    pixels = read_mask(mask)
    tiles = iglob(tiles)


    # We use 317 as 317^2 = 100489 which is the smallest square integer
    # that fits 100,000 'pixels'. A pixel in this case will be a twitter profile
    # Each tile is 48x48 (hardcodes - could get from first tile when looped)
    per_side = 317
    tile_size = (48, 48)

    sql_script = open('map/coords.sql', 'w')
    con = mdb.connect('localhost', 'root', os.environ['DBPASS'], 'def100k');
    cur = con.cursor()

    try:
        os.mkdir('tiles')
    except OSError:
        pass

    def _get_tile():
        """
            Repeatedly try and return a valid PIL image
        """

        tile = tiles.next()
        try:
            i = Image.open(tile)

            # If the image is indexed then when PIL converts to RGB (for brightness)
            # a bug means it'll return an all white image. This is recent (like 09/13)
            # http://stackoverflow.com/questions/19892919/pil-converting-an-image-with-mode-i-to-rgb-results-in-a-fully-white-image
            # So lets log that for now and move on with a new image

            mode = i.mode
            if mode != 'I':
                return i, tile
            else:
                print "[Skipping] IndexedMode: %s" % tile
                return _get_tile()

        except IOError:
            print "[Skipping] IOError: %s" % tile
            return _get_tile()

    for row_num, row in enumerate(pixels):
        row_image = Image.new('RGB', (tile_size[0] * per_side, tile_size[1]))

        for num, pixel in enumerate(row):

            ypos = row_num + offset

            tile_score = score(pixel)
            src_tile, src_name = _get_tile()

            if tile_score > 128:
                # For 'white' tiles use a bright version
                try:
                    image = ImageEnhance.Brightness(src_tile).enhance(1.33)
                except ValueError:
                    # Might get a conversion error, skip for now and use as is
                    image = src_tile
            else:
                # For dark tiles use a darkened version
                try:
                    image = ImageEnhance.Brightness(src_tile).enhance(0.37)
                except ValueError:
                    image = src_tile
                # If we have dark tiles use black and white version
                # image = src_tile.convert('L')

            # TODO: HACK!!
            filename = src_name.replace('avatars/batch1/', '')
            filename = src_name.replace('avatars/batch2/', '')

            # note we are only shifting across! each row is output individually
            # rather than one giant image
            row_image.paste(image, (num * tile_size[0], 0))
            # Store the tile location for this so we can look it up and add a marker
            # easily on the finished map. Note there's
            stmt = """
                UPDATE images SET xpos=%d, ypos=%d WHERE filename="%s";
            """ % (num, ypos, filename)

            sql_script.write(stmt)
            cur.execute(stmt)
            con.commit()
            print stmt

        image_name = 'tiles/row_%03d.png' % ypos
        row_image.save(image_name)

        print "Output %s" % image_name

    sql_script.close()
    con.close()
Esempio n. 3
0
    def __init__(self,
                 p1,
                 operation1,
                 magnitude_idx1,
                 p2,
                 operation2,
                 magnitude_idx2,
                 fillcolor=(128, 128, 128)):
        ranges = {
            "shearX": np.linspace(0, 0.3, 10),
            "shearY": np.linspace(0, 0.3, 10),
            "translateX": np.linspace(0, 150 / 331, 10),
            "translateY": np.linspace(0, 150 / 331, 10),
            "rotate": np.linspace(0, 30, 10),
            "color": np.linspace(0.0, 0.9, 10),
            "posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
            "solarize": np.linspace(256, 0, 10),
            "contrast": np.linspace(0.0, 0.9, 10),
            "sharpness": np.linspace(0.0, 0.9, 10),
            "brightness": np.linspace(0.0, 0.9, 10),
            "autocontrast": [0] * 10,
            "equalize": [0] * 10,
            "invert": [0] * 10
        }

        # from https://stackoverflow.com/questions/5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
        def rotate_with_fill(img, magnitude):
            rot = img.convert("RGBA").rotate(magnitude)
            return Image.composite(rot, Image.new("RGBA", rot.size,
                                                  (128, ) * 4),
                                   rot).convert(img.mode)

        func = {
            "shearX":
            lambda img, magnitude: img.transform(img.size,
                                                 Image.AFFINE,
                                                 (1, magnitude * random.choice(
                                                     [-1, 1]), 0, 0, 1, 0),
                                                 Image.BICUBIC,
                                                 fillcolor=fillcolor),
            "shearY":
            lambda img, magnitude: img.transform(img.size,
                                                 Image.AFFINE,
                                                 (1, 0, 0, magnitude * random.
                                                  choice([-1, 1]), 1, 0),
                                                 Image.BICUBIC,
                                                 fillcolor=fillcolor),
            "translateX":
            lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice(
                    [-1, 1]), 0, 1, 0),
                fillcolor=fillcolor),
            "translateY":
            lambda img, magnitude: img.transform(
                img.size,
                Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.
                               choice([-1, 1])),
                fillcolor=fillcolor),
            "rotate":
            lambda img, magnitude: rotate_with_fill(img, magnitude),
            "color":
            lambda img, magnitude: ImageEnhance.Color(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "posterize":
            lambda img, magnitude: ImageOps.posterize(img, magnitude),
            "solarize":
            lambda img, magnitude: ImageOps.solarize(img, magnitude),
            "contrast":
            lambda img, magnitude: ImageEnhance.Contrast(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "sharpness":
            lambda img, magnitude: ImageEnhance.Sharpness(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "brightness":
            lambda img, magnitude: ImageEnhance.Brightness(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "autocontrast":
            lambda img, magnitude: ImageOps.autocontrast(img),
            "equalize":
            lambda img, magnitude: ImageOps.equalize(img),
            "invert":
            lambda img, magnitude: ImageOps.invert(img)
        }

        self.p1 = p1
        self.operation1 = func[operation1]
        self.magnitude1 = ranges[operation1][magnitude_idx1]
        self.p2 = p2
        self.operation2 = func[operation2]
        self.magnitude2 = ranges[operation2][magnitude_idx2]
def Brightness(image):
    return numpy.array(
        ImageEnhance.Brightness(Image.fromarray(image)).enhance(0.5))
Esempio n. 5
0
def enhance(image):
    enhancer = ImageEnhance.Contrast(image)
    image = enhancer.enhance(5)
    enhancer = ImageEnhance.Brightness(image)
    image = enhancer.enhance(10.0)
    return image
Esempio n. 6
0
def load_image_and_process(im,
                           im_dst,
                           flag,
                           output_shape=(512, 512),
                           prefix_path='train_raw/',
                           transfo_params=None,
                           rand_values=None):
    # target = prefix_path + im + '.jpeg'
    target = prefix_path + im
    im_default = np.zeros((width, height, 3), dtype='float32')
    if not os.path.exists(target):
        im_dst[:] = im_default
        flag = 1
        return

    flag = 0
    im = Image.open(target, mode='r')
    im_new = im
    # im_new.show()
    chosen_values = {}

    if transfo_params.get('extra_width_crop', False):
        w, h = im_new.size

        if w / float(h) >= 1.3:
            cols_thres = np.where(
                np.max(np.max(np.asarray(im_new), axis=2), axis=0) > 35)[0]

            # Extra cond compared to orig crop.
            if len(cols_thres) > output_shape[0] // 2:
                min_x, max_x = cols_thres[0], cols_thres[-1]
            else:
                min_x, max_x = 0, -1

            im_new = im_new.crop((min_x, 0, max_x, h))

    if transfo_params.get('crop_height', False):
        w, h = im_new.size

        if w > 1 and 0.98 <= h / float(w) <= 1.02:
            # "Normal" without height crop, do height crop.
            im_new = im_new.crop((0, int(0.05 * h), w, int(0.95 * h)))

    if transfo_params.get('crop', False) and not \
            transfo_params.get('crop_after_rotation', False):
        if rand_values:
            do_crop = rand_values['do_crop']
        else:
            do_crop = transfo_params['crop_prob'] > np.random.rand()
        chosen_values['do_crop'] = do_crop

        if do_crop:
            out_w, out_h = im_new.size
            w_dev = int(transfo_params['crop_w'] * out_w)
            h_dev = int(transfo_params['crop_h'] * out_h)

            # If values are supplied.
            if rand_values:
                w0, w1 = rand_values['w0'], rand_values['w1']
                h0, h1 = rand_values['h0'], rand_values['h1']
            else:
                w0 = np.random.randint(0, w_dev + 1)
                w1 = np.random.randint(0, w_dev + 1)
                h0 = np.random.randint(0, h_dev + 1)
                h1 = np.random.randint(0, h_dev + 1)

            # Add params to dict.
            chosen_values['w0'] = w0
            chosen_values['w1'] = w1
            chosen_values['h0'] = h0
            chosen_values['h1'] = h1

            im_new = im_new.crop((0 + w0, 0 + h0, out_w - w1, out_h - h1))

    if transfo_params.get('shear', False):
        if transfo_params['shear_prob'] > np.random.rand():
            # print 'shear'
            # TODO: No chosen values because shear not really used.
            shear_min, shear_max = transfo_params['shear_range']
            m = shear_min + np.random.rand() * (shear_max - shear_min)
            out_w, out_h = im_new.size
            xshift = abs(m) * out_w
            new_width = out_w + int(round(xshift))
            im_new = im_new.transform((new_width, out_h), Image.AFFINE,
                                      (1, m, -xshift if m > 0 else 0, 0, 1, 0),
                                      Image.BICUBIC)

    if transfo_params.get('rotation_before_resize', False):
        if rand_values:
            rotation_param = rand_values['rotation_param']
        else:
            rotation_param = np.random.randint(
                transfo_params['rotation_range'][0],
                transfo_params['rotation_range'][1])
        chosen_values['rotation_param'] = rotation_param

        im_new = im_new.rotate(rotation_param,
                               resample=Image.BILINEAR,
                               expand=transfo_params.get(
                                   'rotation_expand', False))
        if transfo_params.get('rotation_expand', False):
            im_new = im_new.crop(im_new.getbbox())

    if transfo_params.get('crop_after_rotation', False):
        if rand_values:
            do_crop = rand_values['do_crop']
        else:
            do_crop = transfo_params['crop_prob'] > np.random.rand()
        chosen_values['do_crop'] = do_crop

        if do_crop:
            out_w, out_h = im_new.size
            w_dev = int(transfo_params['crop_w'] * out_w)
            h_dev = int(transfo_params['crop_h'] * out_h)

            # If values are supplied.
            if rand_values:
                w0, w1 = rand_values['w0'], rand_values['w1']
                h0, h1 = rand_values['h0'], rand_values['h1']
            else:
                w0 = np.random.randint(0, w_dev + 1)
                w1 = np.random.randint(0, w_dev + 1)
                h0 = np.random.randint(0, h_dev + 1)
                h1 = np.random.randint(0, h_dev + 1)

            # Add params to dict.
            chosen_values['w0'] = w0
            chosen_values['w1'] = w1
            chosen_values['h0'] = h0
            chosen_values['h1'] = h1

            im_new = im_new.crop((0 + w0, 0 + h0, out_w - w1, out_h - h1))

    if transfo_params.get('keep_aspect_ratio', False):
        im_new = make_thumb(im_new,
                            size=output_shape,
                            pad=transfo_params['resize_pad'])
    else:
        im_new = im_new.resize(output_shape, resample=Image.BILINEAR)

    if transfo_params.get('rotation', False) \
            and not transfo_params.get('rotation_before_resize', False):
        if rand_values:
            rotation_param = rand_values['rotation_param']
        else:
            rotation_param = np.random.randint(
                transfo_params['rotation_range'][0],
                transfo_params['rotation_range'][1])
        chosen_values['rotation_param'] = rotation_param

        im_new = im_new.rotate(rotation_param,
                               resample=Image.BILINEAR,
                               expand=transfo_params.get(
                                   'rotation_expand', False))
        if transfo_params.get('rotation_expand', False):
            im_new = im_new.crop(im_new.getbbox())

    if transfo_params.get('contrast', False):
        contrast_min, contrast_max = transfo_params['contrast_range']
        if rand_values:
            contrast_param = rand_values['contrast_param']
        else:
            contrast_param = np.random.uniform(contrast_min, contrast_max)
        chosen_values['contrast_param'] = contrast_param

        im_new = ImageEnhance.Contrast(im_new).enhance(contrast_param)

    if transfo_params.get('brightness', False):
        brightness_min, brightness_max = transfo_params['brightness_range']
        if rand_values:
            brightness_param = rand_values['brightness_param']
        else:
            brightness_param = np.random.uniform(brightness_min,
                                                 brightness_max)
        chosen_values['brightness_param'] = brightness_param

        im_new = ImageEnhance.Brightness(im_new).enhance(brightness_param)

    if transfo_params.get('color', False):
        color_min, color_max = transfo_params['color_range']
        if rand_values:
            color_param = rand_values['color_param']
        else:
            color_param = np.random.uniform(color_min, color_max)
        chosen_values['color_param'] = color_param

        im_new = ImageEnhance.Color(im_new).enhance(color_param)

    if transfo_params.get('flip', False):
        if rand_values:
            do_flip = rand_values['do_flip']
        else:
            do_flip = transfo_params['flip_prob'] > np.random.rand()

        chosen_values['do_flip'] = do_flip

        if do_flip:
            im_new = im_new.transpose(Image.FLIP_LEFT_RIGHT)

    if output_shape[0] < 200 and False:
        # Otherwise too slow.
        # TODO: Disabled for now
        if 'rotation' in transfo_params and transfo_params['rotation']:
            if rand_values:
                rotation_param = rand_values['rotation_param2']
            else:
                rotation_param = np.random.randint(
                    transfo_params['rotation_range'][0],
                    transfo_params['rotation_range'][1])

            im_new = im_new.rotate(rotation_param,
                                   resample=Image.BILINEAR,
                                   expand=False)

            chosen_values['rotation_param2'] = rotation_param

    if transfo_params.get('zoom', False):
        if rand_values:
            do_zoom = rand_values['do_zoom']
        else:
            do_zoom = transfo_params['zoom_prob'] > np.random.rand()
        chosen_values['do_zoom'] = do_zoom

        if do_zoom:
            zoom_min, zoom_max = transfo_params['zoom_range']
            out_w, out_h = im_new.size
            if rand_values:
                w_dev = rand_values['w_dev']
            else:
                w_dev = int(np.random.uniform(zoom_min, zoom_max) / 2 * out_w)
            chosen_values['w_dev'] = w_dev

            im_new = im_new.crop(
                (0 + w_dev, 0 + w_dev, out_w - w_dev, out_h - w_dev))

    if im_new.size != output_shape:
        im_new = im_new.resize(output_shape, resample=Image.BILINEAR)

    im_new.show()
    im_new = np.asarray(im_new).astype('float32') / 255
    im_dst[:] = im_new
    im.close()
    del im, im_new
    return chosen_values
Esempio n. 7
0
def brightnessEnhancement(root_path, img_name):  # 亮度增强
    image = Image.open(os.path.join(root_path, img_name))
    enh_bri = ImageEnhance.Brightness(image)
    brightness = 1.5
    image_brightened = enh_bri.enhance(brightness)
Esempio n. 8
0
def ELA(imgfile,type):

    ## TYPE 1 (IMAGE) --- TYPE 2 (URL) ##
    # Load Original Image #
    original = None
    if type == 1:
        original = Image.open(imgfile)
    elif type == 2:
        # Download the file #
        urllib.request.urlretrieve(imgfile, filename)
        original = Image.open(filename)

    if original is None:
        return 'Couldnt process your request.'
    
    # Convert to Black and White #
    original = original.convert('L')
    original = ImageEnhance.Sharpness(original).enhance(0.0)
    print('Image: %s' %(filename))

    # Compress at 70% #  
    original.save(TEMP,'JPEG',quality=quality)
    temporary = Image.open(TEMP)

    # Find Difference between original and temporary #
    diff = ImageChops.difference(original, temporary)

    # Find the max value of color band in image #
    extrema = diff.getextrema()
    max_diff = extrema[1]
    print('Extrema: %d' %(max_diff),end=' ')
    scale = 255.0/max_diff

    # Enhance the image based on that scale #
    diff = ImageEnhance.Brightness(diff).enhance(scale)

    # Fetch the histogram of the difference image (Count of color pixels) #
    lists = diff.histogram(mask=None, extrema=None)

    # Calculate Threshold by keeping last 75 pixels #
    pixels = 0
    for i in range(255,1,-1):
        if pixels+lists[i] <= 75:
            pixels += lists[i]
        else:
            threshold = i+1
            print('Threshold: %d' %(threshold),end=' ')
            break

    # Apply Threshold #
    bw = diff.point(lambda x: 0 if x < threshold else 255, '1')
    
    # Calculate Radius #
    WIDTH, HEIGHT = bw.size
    RADIUS = int(math.sqrt((WIDTH*HEIGHT)/(3.14*625.23)))
    print('Radius: %d' %(RADIUS))

    # Maintain a pixel array (Pixel Number : X-Y Co-ordinate) #
    coordinates = []

    # EDGES {(V1->V2) (V2->V3) (V4->V5)}#
    edges = []

    # Scan the entire image and fetch co-ordinates of white pixels #
    bwa = bw.load()
    for x in range(WIDTH):
        for y in range(HEIGHT):

            # Fetch each pixel #
            # color = bw.getpixel((x,y))
            color = bwa[x,y]

            # If pixel is white, record its co-ordinates #
            if color==255:
                coordinates.append([x,y])

    # Loop through XY Co-Ordinates and find Edges #
    for coord in coordinates:

        index = coordinates.index(coord)
        
        x1 = coord[0]
        y1 = coord[1]

        for next_index in range(index+1,len(coordinates)):
            
            x2 = coordinates[next_index][0]
            y2 = coordinates[next_index][1]

            distance = math.sqrt(((x1-x2)**2)+((y1-y2)**2))

            if (distance < (2*RADIUS)):
                edges.append([index,next_index])
    
    # Create a list that has connections for every pixel (V1:V2,V3,...) (V2:V1,V2,...) #
    connectedPixelsList = []

    # No of white pixels #
    total_white_pixels = len(coordinates)
    connectedPixelsList = getConnectedPixels(edges,total_white_pixels)

    # Labels of clusters (Starting value -> 100) #
    labelCount = 100

    # Dictionary (Pixel:Label) #
    label_of_pixels = {}

    # Assign every pixel a label of 0 #
    for index in range(0,len(connectedPixelsList)):
        label_of_pixels.update({connectedPixelsList[index][0]:0})

    # Check neighbor of every pixel and find the root label of every pixel #
    for index in range(0,len(connectedPixelsList)):
        element = connectedPixelsList[index]

        # Arbitrary root number #
        root = 1000

        # Find label with lowest value and assign to root #
        for i in range(1,len(element)):
            pixel = element[i]
            label = label_of_pixels.get(pixel)

            if label > 0 and root > label:
                root = label

        # Union-Find Algorithm #
        
        # If no root found, assign an arbitrary label #
        if root == 1000:
            labelCount += 1
            label_of_pixels.update({element[0]:labelCount})
        else:
            # Update all pixels with root as label #
            for i in range(0,len(element)):
                pixel = element[i]
                label_of_pixels.update({pixel:root})

    # # Count the number of white pixels for each label #
    color_count = {}
    for lp in label_of_pixels.items():
        label = lp[1]
        if label not in color_count:
            color_count.update({label:1})
        else:
            color_count.update({label:color_count.get(label)+1})

    # White Pixels in each Cluster #
    print('White pixels in each cluster: ',end=' ')
    max = 0
    for p in color_count.values():
        if max < p:
            max = p
        print(p,end='  ')
    print()
    print('Max: %d' %(max))

    maxToTotalRatio = (max/total_white_pixels)*100
    if maxToTotalRatio > 80:
        return {'maxToTotalRatio':maxToTotalRatio,'edited':True}
    else:
        return {'maxToTotalRatio':maxToTotalRatio,'edited':False}
Esempio n. 9
0
def data_generator(batch_size,
                   w,
                   h,
                   rotate=False,
                   crop=True,
                   enhance_range=0.3):

    #return data
    Y = np.zeros((batch_size * 2, 389))
    X = np.zeros((batch_size * 2, w, h, 3))
    feature = np.zeros((388, ))
    counter = 0

    while True:
        #generate batch
        for i in range(batch_size):
            # randomly read correct/incorrect samples
            pos_img = PIL.Image.open(data_dir + '\\img_pos\\' +
                                     y_index[str(counter)]).convert('RGB')
            neg_img = PIL.Image.open(data_dir + '\\img_neg\\' +
                                     y_neg_list[counter]).convert('RGB')
            feature[:] = y_data[counter]
            #crop
            if crop == True:
                width, height = pos_img.size
                max_x, min_x, max_y, min_y = get_bounding_box(feature)

                if min_x >= 0 and min_y >= 0 and max_x <= 1 and max_y <= 1:
                    left = np.random.uniform(0, min_x)
                    right = np.random.uniform(max_x, 1)
                    top = np.random.uniform(0, min_y)
                    bottom = np.random.uniform(max_y, 1)

                    feature = feature.reshape(-1, 2)
                    feature[:,
                            0] = (feature[:, 0] - left) * (1 / (right - left))
                    feature[:,
                            1] = (feature[:, 1] - top) * (1 / (bottom - top))
                    feature = np.squeeze(feature.reshape(1, -1), 0)
                    pos_img = pos_img.crop((left * width, top * height,
                                            right * width, bottom * height))

                    width, height = neg_img.size
                    neg_img = neg_img.crop(
                        (np.random.uniform(0, 0.25) * width,
                         np.random.uniform(0, 0.25) * height,
                         np.random.uniform(0.75, 1) * width,
                         np.random.uniform(0.75, 1) * height))

            #resize
            pos_img = pos_img.resize((w, h))
            neg_img = neg_img.resize((w, h))

            #rotate
            if rotate == True:
                angle = (np.random.randint(0, 3) * 90) - 90
                feature = rotate_axis(feature, angle)
                pos_img = pos_img.rotate(angle)
                angle = (np.random.randint(0, 3) * 90) - 90
                neg_img = neg_img.rotate(angle)

            #random brightness, contrast and color
            pos_img = ImageEnhance.Brightness(pos_img).enhance(
                1 + np.random.uniform(0, enhance_range) - (enhance_range / 2))
            pos_img = ImageEnhance.Color(pos_img).enhance(
                1 + np.random.uniform(0, enhance_range) - (enhance_range / 2))
            pos_img = ImageEnhance.Contrast(pos_img).enhance(
                1 + np.random.uniform(0, enhance_range) - (enhance_range / 2))

            neg_img = ImageEnhance.Brightness(neg_img).enhance(
                1 + np.random.uniform(0, enhance_range) - (enhance_range / 2))
            neg_img = ImageEnhance.Color(neg_img).enhance(
                1 + np.random.uniform(0, enhance_range) - (enhance_range / 2))
            neg_img = ImageEnhance.Contrast(neg_img).enhance(
                1 + np.random.uniform(0, enhance_range) - (enhance_range / 2))

            #generate train data
            X[i] = np.array(pos_img) / 255
            X[batch_size + i] = np.array(neg_img) / 255

            #it's not a background therefore 0 position is 1
            Y[i, 0] = 1
            Y[i, 1:] = feature

            counter += 1
            counter %= len(y_index)

        #shuffle data
        index = np.arange(0, batch_size * 2)
        np.random.shuffle(index)
        yield (X[index], Y[index])
Esempio n. 10
0
def bright_img(img, br=2):
    enh = ImageEnhance.Brightness(img)
    return enh.enhance(br)
Esempio n. 11
0
def tweak_image_brightness(image):
    # Tweak the image's brightness - got the idea from https://chatbotslife.com/using-augmentation-to-mimic-human-driving-496b569760a9#.ndechdida
    enhancer = ImageEnhance.Brightness(image)
    return enhancer.enhance(random.uniform(0.2, 1.8))
	def data_Brightness(self, image_input, ength_Value):  # 亮度增强
		enh = ImageEnhance.Brightness(image_input)
		result = enh.enhance(ength_Value)
		return result
Esempio n. 13
0
 def transform_image(self, image, magnitude=0, direction=1):
     value = 1 + self.magnitude_range[magnitude] * direction
     return ImageEnhance.Brightness(image).enhance(value)
Esempio n. 14
0
    def process_image(self):
        if self.step_x is None:
            step = UNITS_PER_INCH / self.dpi
            self.step_x = step
            self.step_y = step

        from PIL import Image, ImageEnhance, ImageFilter, ImageOps

        from meerk40t.image.actualize import actualize
        from meerk40t.image.imagetools import dither

        image = self.image
        main_matrix = self.matrix

        r = self.red * 0.299
        g = self.green * 0.587
        b = self.blue * 0.114
        v = self.lightness
        c = r + g + b
        try:
            c /= v
            r = r / c
            g = g / c
            b = b / c
        except ZeroDivisionError:
            pass
        if image.mode != "L":
            image = image.convert("RGB")
            image = image.convert("L", matrix=[r, g, b, 1.0])
        if self.invert:
            image = image.point(lambda e: 255 - e)

        # Calculate device real step.
        step_x, step_y = self.step_x, self.step_y
        if (
            main_matrix.a != step_x
            or main_matrix.b != 0.0
            or main_matrix.c != 0.0
            or main_matrix.d != step_y
        ):
            try:
                image, actualized_matrix = actualize(
                    image,
                    main_matrix,
                    step_x=step_x,
                    step_y=step_y,
                    inverted=self.invert,
                )
            except (MemoryError, DecompressionBombError):
                self.process_image_failed = True
                return
        else:
            actualized_matrix = Matrix(main_matrix)

        if self.invert:
            empty_mask = image.convert("L").point(lambda e: 0 if e == 0 else 255)
        else:
            empty_mask = image.convert("L").point(lambda e: 0 if e == 255 else 255)
        # Process operations.

        for op in self.operations:
            name = op["name"]
            if name == "crop":
                try:
                    if op["enable"] and op["bounds"] is not None:
                        crop = op["bounds"]
                        left = int(crop[0])
                        upper = int(crop[1])
                        right = int(crop[2])
                        lower = int(crop[3])
                        image = image.crop((left, upper, right, lower))
                except KeyError:
                    pass
            elif name == "edge_enhance":
                try:
                    if op["enable"]:
                        if image.mode == "P":
                            image = image.convert("L")
                        image = image.filter(filter=ImageFilter.EDGE_ENHANCE)
                except KeyError:
                    pass
            elif name == "auto_contrast":
                try:
                    if op["enable"]:
                        if image.mode not in ("RGB", "L"):
                            # Auto-contrast raises NotImplementedError if P
                            # Auto-contrast raises OSError if not RGB, L.
                            image = image.convert("L")
                        image = ImageOps.autocontrast(image, cutoff=op["cutoff"])
                except KeyError:
                    pass
            elif name == "tone":
                try:
                    if op["enable"] and op["values"] is not None:
                        if image.mode == "L":
                            image = image.convert("P")
                            tone_values = op["values"]
                            if op["type"] == "spline":
                                spline = ImageNode.spline(tone_values)
                            else:
                                tone_values = [q for q in tone_values if q is not None]
                                spline = ImageNode.line(tone_values)
                            if len(spline) < 256:
                                spline.extend([255] * (256 - len(spline)))
                            if len(spline) > 256:
                                spline = spline[:256]
                            image = image.point(spline)
                            if image.mode != "L":
                                image = image.convert("L")
                except KeyError:
                    pass
            elif name == "contrast":
                try:
                    if op["enable"]:
                        if op["contrast"] is not None and op["brightness"] is not None:
                            contrast = ImageEnhance.Contrast(image)
                            c = (op["contrast"] + 128.0) / 128.0
                            image = contrast.enhance(c)

                            brightness = ImageEnhance.Brightness(image)
                            b = (op["brightness"] + 128.0) / 128.0
                            image = brightness.enhance(b)
                except KeyError:
                    pass
            elif name == "gamma":
                try:
                    if op["enable"] and op["factor"] is not None:
                        if image.mode == "L":
                            gamma_factor = float(op["factor"])

                            def crimp(px):
                                px = int(round(px))
                                if px < 0:
                                    return 0
                                if px > 255:
                                    return 255
                                return px

                            if gamma_factor == 0:
                                gamma_lut = [0] * 256
                            else:
                                gamma_lut = [
                                    crimp(pow(i / 255, (1.0 / gamma_factor)) * 255)
                                    for i in range(256)
                                ]
                            image = image.point(gamma_lut)
                            if image.mode != "L":
                                image = image.convert("L")
                except KeyError:
                    pass
            elif name == "unsharp_mask":
                try:
                    if (
                        op["enable"]
                        and op["percent"] is not None
                        and op["radius"] is not None
                        and op["threshold"] is not None
                    ):
                        unsharp = ImageFilter.UnsharpMask(
                            radius=op["radius"],
                            percent=op["percent"],
                            threshold=op["threshold"],
                        )
                        image = image.filter(unsharp)
                except (KeyError, ValueError):  # Value error if wrong type of image.
                    pass
            elif name == "halftone":
                try:
                    if op["enable"]:
                        image = RasterScripts.halftone(
                            image,
                            sample=op["sample"],
                            angle=op["angle"],
                            oversample=op["oversample"],
                            black=op["black"],
                        )
                except KeyError:
                    pass

        if empty_mask is not None:
            background = Image.new(image.mode, image.size, "white")
            background.paste(image, mask=empty_mask)
            image = background  # Mask exists use it to remove any pixels that were pure reject.

        if self.dither and self.dither_type is not None:
            if self.dither_type != "Floyd-Steinberg":
                image = dither(image, self.dither_type)
            image = image.convert("1")
        inverted_main_matrix = Matrix(main_matrix).inverse()
        self.processed_matrix = actualized_matrix * inverted_main_matrix
        self.processed_image = image
        # self.matrix = actualized_matrix
        self.altered()
        self.process_image_failed = False
Esempio n. 15
0
def random_brightness(img, lower=0.6, upper=1.4):
    factor = random.uniform(lower, upper)
    img = ImageEnhance.Brightness(img)
    img = img.enhance(factor)
    return img
def enhancer():
    # import files from folder
    for image in dirs:
        if os.path.isfile(path + image):
            source = Image.open(path + image)
            f, e = os.path.splitext(path + image)

            #
            # Two image source inputs filter separately with DETAIL and
            # FIND_EDGES filters.
            #
            # http://pillow.readthedocs.io/en/3.4.x/reference/ImageFilter.html
            #
            filter1 = source.filter(ImageFilter.DETAIL)
            filter2 = source.filter(ImageFilter.FIND_EDGES)

            #
            # One image with DETAIL filtered and the second image with FIND_EDGES
            # filtered. Two filtered image blends together with alpha 0.1 overlays.
            # http://pillow.readthedocs.io/en/3.4.x/reference/Image.html?highlight=blend#PIL.Image.blend
            #
            compose = Image.blend(filter1, filter2, alpha=.1)

            #
            # Taking from the first image blend (compose) and blend it again with the
            # SMOOTH filter as a new image source input. Alpha is 0.1 overlays.
            #
            filter3 = source.filter(ImageFilter.SMOOTH)
            blend = Image.blend(compose, filter3, alpha=.1)

            #
            # The final blending (blend) is move to enhancing stage.
            # This stage is to enhance the image COLOR with value 1.5 (0.0).
            # IMAGE > enhanced > COLOR
            #
            # http://pillow.readthedocs.io/en/3.4.x/reference/ImageEnhance.html?highlight=ImageEnhance#PIL.ImageEnhance.Color
            #
            imageColor = ImageEnhance.Color(blend)
            renderStage1 = imageColor.enhance(1.5)

            #
            # This stage is to enhance the image CONTRAST with value 1.1 (0.0).
            # IMAGE(color) > enhanced > CONTRAST
            #
            # http://pillow.readthedocs.io/en/3.4.x/reference/ImageEnhance.html?highlight=ImageEnhance#PIL.ImageEnhance.Contrast
            #
            imageContrast = ImageEnhance.Contrast(renderStage1)
            renderStage2 = imageContrast.enhance(1.1)

            #
            # This stage is to enhance the image CONTRAST with value 1.1 (0.0).
            # IMAGE(contrast) > enhanced > BRIGHTNESS
            #
            # http://pillow.readthedocs.io/en/3.4.x/reference/ImageEnhance.html?highlight=ImageEnhance#PIL.ImageEnhance.Brightness
            #
            imageBrightness = ImageEnhance.Brightness(renderStage2)
            renderFinal = imageBrightness.enhance(1.1)

            #
            # Final, write to a new image file
            # File Format is JPEG with Quality 100
            renderFinal.save(f + '_enhanced.jpg', 'JPEG', quality=100)
Esempio n. 17
0
    elif option == 'mr':
        print("Please wait...")
        image = Image.open(image_name)
        mirrored = ImageOps.mirror(image)
        mirrored.save('{}{}'.format('mirrored', image_name))
        print('Successful!\n')
        mirrored.show()

    elif option == 'bn':
        print("Please wait...")
        b = input(
            'Enter the brightness value you\'d like to add (1 is stock I am float friendly)'
        )
        image = Image.open(image_name)
        brightened = ImageEnhance.Brightness(image).enhance(float(b))
        brightened.save('{}{}'.format('brightened', image_name))
        print('Successful!\n')
        brightened.show()

    elif option == 'bw':
        print("Please wait...")
        image = Image.open(image_name)
        bw = image.convert('L')
        bw.save('{}{}'.format('bw', image_name))
        print('Successful!\n')
        bw.show()

    elif option == 'flt':
        image = Image.open(image_name)
        choice = input(
def main():
    np.warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
    args = parse_args()

    image_paths = get_image_paths(args['image'], args['directory'])
    plate_size = args['plate_size']

    global small_plaques
    global debug_mode
    small_plaques = args['small_plaque']
    debug_mode = args['debug']

    for image_path in image_paths:
        print("Processing " + image_path)

        # adjust too bright image
        #average image brightness
        image_brightness = get_brightness(image_path)
        im = Image.open(image_path)

        image = cv2.imread(image_path)
        if image_brightness > 70:
            #im = Image.open(image_tmp)
            enhancer = ImageEnhance.Brightness(im)
            factor = 0.5
            im_output = enhancer.enhance(factor)

            im_output.save(image_path + '.tmp' +
                           os.path.splitext(image_path)[1])
            image = cv2.imread(image_path + '.tmp' +
                               os.path.splitext(image_path)[1])

        binary_image, high_contrast, clr_high_contrast = process_image(
            image, 2.5)
        #       cv2.imshow("Binary image", binary_image)
        contours = get_contours(binary_image)
        image_size = binary_image.shape

        green_df, red_df, other_df, plate_df = filter_contours(
            contours, image_size)

        # Filter plaques duplicates (circle in circle) in valid plaques and plates
        green_df_copy = green_df.copy()
        plate_df_copy = plate_df.copy()
        green_df_copy = check_duplicate_plaques(green_df_copy)
        plate_df_copy = check_duplicate_plaques(plate_df_copy)

        red_df_copy = red_df.copy()
        other_df_copy = other_df.copy()

        green_df_copy = calculate_size_mm(plate_size, green_df_copy, plate_df)
        red_df_copy = calculate_size_mm(plate_size, red_df_copy, plate_df)
        other_df_copy = calculate_size_mm(plate_size, other_df_copy, plate_df)
        plate_df_copy = calculate_size_mm(plate_size, plate_df_copy, plate_df)

        if (green_df_copy.size > 0):
            # get Petri dish size and adjust plaques sizes
            green_df_copy['MEAN_COLOUR'] = green_df_copy.apply(
                lambda x: get_mean_grey_colour(high_contrast, x['CONTOURS']),
                axis=1)

            green_df_copy['MEAN_COLOUR'] = green_df_copy.apply(
                lambda x: get_mean_grey_colour(clr_high_contrast, x['CONTOURS']
                                               ),
                axis=1)

            #Remove extra black contours
            #TODO dark plaques are being filtered out (online_image.png
            filter_dev_colour = green_df_copy.apply(
                lambda x: abs(x['MEAN_COLOUR']) < 40, axis=1)
            green_df_copy = green_df_copy[~filter_dev_colour]
        else:
            green_df_copy['MEAN_COLOUR'] = 0

        green_df_copy = renumerate_df(green_df_copy)
        renumerate_df(red_df)
        renumerate_df(other_df)

        output = draw_contours(clr_high_contrast, green_df_copy, red_df_copy,
                               other_df_copy, plate_df_copy)

        if not os.path.exists(out_dir_path):
            os.makedirs(out_dir_path)
        write_images(out_dir_path, output, binary_image, high_contrast,
                     image_path)

        #Delete the temporary file
        if os.path.exists(image_path + '.tmp' +
                          os.path.splitext(image_path)[1]):
            os.remove(image_path + '.tmp' + os.path.splitext(image_path)[1])

        # format float values
        # green_df_copy['ENCL_DIAMETER_MM'] = green_df_copy['ENCL_DIAMETER_MM'].apply(lambda x: f"{x:.2f}")
        write_data(out_dir_path, image_path, green_df_copy, red_df_copy,
                   other_df)
        print("Process completed successfully")
        print(str(len(green_df_copy)) + ' plaques were found\n')
    async def handle(self, params, message, client):
        name = (params[0])
        url = f'https://api.mojang.com/users/profiles/minecraft/{name}?'
        response = requests.get(url)
        uuid = response.json()['id']

        
        data = requests.get(f"https://api.hypixel.net/player?key={settings.KEY}&name={name}").json()
        #if "player" in data == "null":
         # await message.channel.send("bad name")
        #else: 
        try:
          if "rank" in data["player"] and data["player"]["rank"] != "NORMAL":
            rank = data["player"]["rank"]
          elif "newPackageRank" in data["player"]:
            rank = data["player"]["newPackageRank"]
          elif "packageRank" in data["player"]:
            rank = data["player"]["packageRank"]
          else:
            rank = "non"
        except TypeError: 
          await message.channel.send("Player doesn't exist or has never played on hypixel")
        print("getting stats, please wait. ")
        
        #NameColor = (0,0,0)
          
       
          
        bwfinalkills = data["player"]["stats"]["Bedwars"]["final_kills_bedwars"] 
        bwstars = data["player"]["achievements"]["bedwars_level"]
        displayname = data["player"]["displayname"]
        networkxp = data["player"]["networkExp"]
        skywarslevel = data["player"]["stats"]["SkyWars"]["levelFormatted"]
        xp = data["player"]["stats"]["SkyWars"]["skywars_experience"]
        print(rank)




        networkLevel = (math.sqrt((2 * networkxp) + 30625) / 50) - 2.5
        networkLevel = round(networkLevel)
        def sw_xp_to_lvl(xp):
          xps = [0, 20, 70, 150, 250, 500, 1000, 2000, 3500, 6000, 10000, 15000]
          if xp >= 15000:
            return (xp - 15000) / 10000. + 12
          else:
            for i in range(len(xps)):
              if xp < xps[i]:
                return i + float(xp - xps[i-1]) / (xps[i] - xps[i-1])
     
      #  skin = data2['value']
        skinrender = f'https://crafatar.com/renders/head/{uuid}.png?size=64'
        #size doesnt work maybe the passte thing cana make t bigger
        print(skinrender)
        urllib.request.urlretrieve(skinrender, "skin.png")
        skin=Image.open('skin.png')
        

        #
        img = Image.new('RGB', (1920,1080), color = (255, 255, 255))
        img2 = Image.open("darkbackground.jpg")
        enhancer = ImageEnhance.Brightness(img2)
        
        img2_output = enhancer.enhance(0.5)
        img2_output.save('darkbackground1.jpg')
        img2 = Image.open("darkbackground.jpg")
        #blurImage = img2.filter(ImageFilter.BLUR)
        #blurImage.save('blurbackground.png')
        img.paste(img2)
        img.paste(skin, (1800,0))
        fnt = ImageFont.truetype('fonts/Minecraftia-Regular.ttf', 100)
        fnt2 = ImageFont.truetype('fonts/Minecraftia-Regular.ttf',70)
       
        d = ImageDraw.Draw(img)
        d.text((50,45), "Stats", font=fnt, fill=(255, 255, 255))
      
        
        if displayname == "FinalHit":
          d.text((50,175), displayname, font=fnt2,fill=(211, 33, 255))
        elif displayname == "sekoh":
          d.text((50,175), displayname, font=fnt2,fill=(255,85,85))
        elif rank == "VIP":
          d.text((50,175), displayname, font=fnt2,fill=(255, 255, 85))
        elif rank == "VIP_PLUS":
          d.text((50,175), displayname, font=fnt2,fill=(85, 255, 85))
        elif rank == "MVP":
          d.text((50,175), displayname, font=fnt2,fill=(85, 255, 255))
        elif rank == "MVP_PLUS":
          try:
            monthlyPackageRank = data["player"]["monthlyPackageRank"]
            print(monthlyPackageRank)
            if monthlyPackageRank == "SUPERSTAR":
              d.text((50,175), displayname, font=fnt2,fill=(255, 170, 0))
            else: d.text((50,175), displayname, font=fnt2,fill=(85, 255, 255))
          except KeyError:
            print("never got mvp++ before")
            d.text((50,175), displayname, font=fnt2,fill=(85, 255, 255))
        
          
          
          #check if monthlypackagerank == superstar to see if mvp++
          
            
          
          #d.text((50,150), displayname, font=fnt2,fill=(85, 255, 255))
        elif rank == "YOUTUBER":
          d.text((50,175), displayname, font=fnt2,fill=(255, 85, 85))
        elif rank == "ADMIN":
          d.text((50,175), displayname, font=fnt2,fill=(255, 85, 85))
        elif rank == "HELPER":
          d.text((50,175), displayname, font=fnt2,fill=(85, 85, 255))
        elif rank == "MODERATOR":
          d.text((50,175), displayname, font=fnt2,fill=(0, 170, 0))
        else:
          rank = "NON"
          d.text((50,175), displayname, font=fnt2,fill=(170, 170, 170))

        print(networkLevel)
        #d.text((50,175), networkLevel, font=fnt2,fill=(170, 170, 170))
        
        hi = "hi"
        strnetworklevel = str(networkLevel)
        print(strnetworklevel)
        d.text((50,300), "hypixel level:", font=fnt2,fill=(255,255,255))
        d.text((610 ,300), strnetworklevel, font=fnt2,fill=(255,255,255))
        
        strbwstars = str(bwstars)
        print(strbwstars)
        d.text((50 ,370), "bedwars stars: ", font=fnt2,fill=(255,255,255))
        d.text((710 ,370), strbwstars, font=fnt2,fill=(255,255,255))

        strskywarslevel = str(skywarslevel)
        print(strskywarslevel)
        skywarslevels = sw_xp_to_lvl(xp)
        print(skywarslevels)
        roundskywarslevels = round(skywarslevels)
        strskywarslevels = str(roundskywarslevels)
        d.text((50 ,440), "skywars stars: ", font=fnt2,fill=(255,255,255))
        d.text((710 ,440), strskywarslevels, font=fnt2,fill=(255,255,255))
        #find skywars_experience and convert to level using
        #def sw_xp_to_lvl(xp):
    #xps = [0, 20, 70, 150, 250, 500, 1000, 2000, 3500, 6000, 10000, 15000]
    #if xp >= 15000:
     #   return (xp - 15000) / 10000. + 12
    #else:
     #   for i in range(len(xps)):
      #      if xp < xps[i]:
       #         return i + float(xp - xps[i-1]) / (xps[i] - xps[i-1])

        img.save('test.png')
        
        embed = discord.Embed(
          title = "Bedwars Finals",
          description = f'Bedwars final kills = {bwfinalkills}',
          colour = discord.Colour.red()
        )
        
      
        embed.set_footer(text = f'message sent by {message.author.name}')
     
       # await message.channel.send(embed=embed)
        #await message.channel.send(skin)

       
        

        
        
       
        #await message.channel.send(bwfinalkills)
        await message.channel.send(file=discord.File('test.png'))
        print(networkxp)
        print(networkLevel)
        
        
        #settings.KEY
def random_brightness(img, factor):
	"""random change the brightness of an img"""
	enhancer = ImageEnhance.Brightness(img)
	selector = np.random.uniform(low=factor)
	return enhancer.enhance(selector)
font = pygame.font.SysFont("Courier", 11)


def disp(phrase, loc):
    s = font.render(phrase, True, (200, 200, 200))
    sh = font.render(phrase, True, (50, 50, 50))
    screen.blit(sh, (loc[0] + 1, loc[1] + 1))
    screen.blit(s, loc)


brightness = 1.0
contrast = 1.0
shots = 0

while 1:
    camshot = ImageEnhance.Brightness(cam.getImage()).enhance(brightness)
    camshot = ImageEnhance.Contrast(camshot).enhance(contrast)
    for event in pygame.event.get():
        if event.type == pygame.QUIT: sys.exit()
    keyinput = pygame.key.get_pressed()
    if keyinput[K_1]: brightness -= .1
    if keyinput[K_2]: brightness += .1
    if keyinput[K_3]: contrast -= .1
    if keyinput[K_4]: contrast += .1
    if keyinput[K_q]: cam.displayCapturePinProperties()
    if keyinput[K_w]: cam.displayCaptureFilterProperties()
    #以下的代码,是在存一个抓图文件。文件名中使用了当前时间
    if keyinput[K_s]:
        filename = str(time.time()) + ".jpg"
        cam.saveSnapshot(filename, quality=80, timestamp=0)
        shots += 1
Esempio n. 22
0
def apply_brightness(image, value):
    enh = ImageEnhance.Brightness(image)
    return enh.enhance(value)
Esempio n. 23
0
def bright(inpng, outpng, brightness):
    peak = Image.open(inpng)
    enhancer = ImageEnhance.Brightness(peak)
    bright = enhancer.enhance(brightness)
    bright.save(outpng)
Esempio n. 24
0
def brightness(img, magnitude):
    magnitudes = np.linspace(0.1, 1.9, 11)
    img = ImageEnhance.Brightness(img).enhance(
        random.uniform(magnitudes[magnitude], magnitudes[magnitude + 1]))
    return img
Esempio n. 25
0
 def apply(self, image):
     return ImageEnhance.Brightness(image).enhance(self.level)
Esempio n. 26
0
 def __call__(self, image, *args):
     alpha = 1.0 + np.random.uniform(-self.var, self.var)
     image = ImageEnhance.Brightness(image).enhance(alpha)
     return (image, *args)
Esempio n. 27
0
 def random_brightness(img, lower=0.5, upper=1.5):
     e = random.uniform(lower, upper)
     return ImageEnhance.Brightness(img).enhance(e)
Esempio n. 28
0
    def __get_more_img(self, img_path):
        im_name = os.path.splitext(os.path.split(img_path)[1])[0]
        im_name = im_name.replace('_pig', '')
        file_no = 0

        self.__cal_progress(im_name)  # 输出进度

        origin_image = Image.open(img_path)

        # 生成猪的原图
        image, pos = self.__get_pig_object(origin_image)
        image.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        if pos[1] - pos[0] < 50 or pos[3] - pos[2] < 50:
            return

        # 生成能用最小的框框住猪的原图(带背景)
        file_no += 1
        frame_img = Image.open(os.path.join(os.path.split(img_path)[0], '%s.jpg' % im_name))
        np_frame_img = np.array(frame_img.resize(self.RESIZE_SIZE))
        np_frame_img = np_frame_img[pos[0]: pos[1] + 1, pos[2]: pos[3] + 1]
        new_frame_img = Image.fromarray(np_frame_img)
        new_frame_img.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 水平翻转
        file_no += 1
        flip_image = image.transpose(Image.FLIP_LEFT_RIGHT)
        flip_image.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 垂直翻转
        file_no += 1
        flip_image = image.transpose(Image.FLIP_TOP_BOTTOM)
        flip_image.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 亮度
        brightness_up = 1 + random.random() * 0.8
        brightness_down = 1 - random.random() * 0.85
        enh_bri = ImageEnhance.Brightness(image)

        # 亮度增强
        file_no += 1
        image_brightened = enh_bri.enhance(brightness_up)
        image_brightened.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 亮度降低
        file_no += 1
        image_brightened = enh_bri.enhance(brightness_down)
        image_brightened.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 色度
        color_up = 1 + random.random() * 0.8
        color_down = 1 - random.random() * 0.7
        enh_col = ImageEnhance.Color(image)

        # 色度增强
        file_no += 1
        image_colored = enh_col.enhance(color_up)
        image_colored.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 色度降低
        file_no += 1
        image_colored = enh_col.enhance(color_down)
        image_colored.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 对比度
        contrast_up = 1 + random.random() * 0.55
        contrast_down = 1 - random.random() * 0.5
        enh_con = ImageEnhance.Contrast(image)

        # 对比度增强
        file_no += 1
        image_contrasted = enh_con.enhance(contrast_up)
        image_contrasted.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 对比度降低
        file_no += 1
        image_contrasted = enh_con.enhance(contrast_down)
        image_contrasted.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 锐度
        sharpness_up = 1 + random.random() * 2
        sharpness_down = 1 - random.random() * 0.8
        enh_sha = ImageEnhance.Sharpness(image)

        # 锐度增强
        file_no += 1
        image_sharped = enh_sha.enhance(sharpness_up)
        image_sharped.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 锐度降低
        file_no += 1
        image_sharped = enh_sha.enhance(sharpness_down)
        image_sharped.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 遮挡
        np_image = np.array(image)
        for i in range(self.NUM_BLOCK_IMAGE):
            block_image = Image.fromarray(self.__get_block_img(copy.deepcopy(np_image)))

            file_no += 1
            block_image.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))

        # 随机裁剪图片
        for i in range(self.NUM_CORP_IMAGE):
            corp_image = self.__random_corp(np_image)
            file_no += 1
            corp_image.save(os.path.join(self.IMG_MORE_PATH, '%s_%d.jpg' % (im_name, file_no)))
Esempio n. 29
0
# A task that is fairly common in image and picture manipulation is to create contact sheets of images.
# A contact sheet is one image that actually contains several other different images. Lets try and make
# a contact sheet for the Master of Science in Information advertisment image. In particular, lets change
# the brightness of the image in ten different ways, then scale the image down smaller, and put them side
# by side so we can get the sense of which brightness we might want to use.
#
# First up, lets import the ImageEnhance module, which has a nice object called Brightness
from PIL import ImageEnhance
# Checking the online documentation for this function, it takes a value between 0.0 (a completely black
# image) and 1.0 (the original image) to adjust the brightness. All of the classes in the ImageEnhance module
# do this the same way, you create an object, in this case Brightness, then you call the enhance function()
# on that object with an appropriate parameter.
#
# Lets write a little loop to generate ten images of different brightness. First we need the Brightness
# object with our image
enhancer = ImageEnhance.Brightness(image)
images = []
for i in range(0, 10):
    # We'll divide i by ten to get the decimal value we want, and append it to the images list
    # we actually call the brightness routine by calling the enhance() function. Remember, you can dig into
    # details of this using the help() function, or by consulting web docs
    images.append(enhancer.enhance(i / 10))
# We can see the result here is a list of ten PIL.Image.Image objects. Jupyter nicely prints out the value
# of python objects nested in lists
print(images)

# In[ ]:

# Lets take these images now and composite them, one above another, in a contact sheet.
# There are several different approaches we can use, but I'll simply create a new image which is like
# the first image, but ten times as high. Lets check out the PIL.Image.new functionality
Esempio n. 30
0
 def brightness(self, factor):
     _img = self._read_image()
     if _img is not None:
         from PIL import ImageEnhance
         _img = ImageEnhance.Brightness(_img).enhance(factor)
         self.store_graphic(_img, self.content_type, self.image_name)