def Load_pickle():

    pickle = Pickle()

    label =  pickle.load_label_pickle("label_pickle")
    feature = pickle.load_feature_pickle("feature_pickle")

    return feature,label
Esempio n. 2
0
 def __init__(self, thread):
     logging.basicConfig(filename='logging.log', level=logging.DEBUG,
                         format='%(asctime)s %(message)s')
     if thread:
         self.my_lock = threading.Lock()
         self.my_semaphore = threading.Semaphore(SEMAPHORE_MAX_NUM)
     else:
         self.my_lock = multiprocessing.Lock()
         self.my_semaphore = multiprocessing.Semaphore(SEMAPHORE_MAX_NUM)
     Pickle.__init__(self)
Esempio n. 3
0
 def delete_value(self, key):
     logging.info("deleting from database")
     self.my_lock.acquire()
     for user in range(SEMAPHORE_MAX_NUM):
         self.my_semaphore.acquire()
     Pickle.delete_value(self, key)
     for user in range(SEMAPHORE_MAX_NUM):
         self.my_semaphore.release()
     self.my_lock.release()
     logging.info("finished deleting from database")
Esempio n. 4
0
 def set_value(self, key, val):
     logging.info("writing to database")
     self.my_lock.acquire()
     for i in range(SEMAPHORE_MAX_NUM):
         self.my_semaphore.acquire()
     Pickle.set_value(self, key, val)
     for i in range(SEMAPHORE_MAX_NUM):
         self.my_semaphore.release()
     self.my_lock.release()
     logging.info("finished writing to database")
Esempio n. 5
0
 def get_value(self, key):
     logging.info("reading from database")
     self.my_semaphore.acquire()
     val = Pickle.get_value(self, key)
     self.my_semaphore.release()
     logging.info("finished reading from database")
     return val
def Save_pickle():

    dataset = Dataset()
    save = dataset.read_training_dataset("train")
    label, feature = dataset.label_feature(save,"Emotion","Pixels")
    pickle = Pickle()
    pickle.save_label_pickle(label)
    pickle.save_feature_pickle(feature)
Esempio n. 7
0
                  metrics=['accuracy'])

    epochs = 1000
    batch_size = 40

    model.fit(feature,
              label,
              batch_size=batch_size,
              epochs=epochs,
              validation_split=0.2,
              callbacks=callbacks)


if __name__ == "__main__":

    pickle = Pickle()

    ## loading dataset
    label = pickle.load_label_pickle("label_pickle")
    feature = pickle.load_feature_pickle("feature_pickle")

    # converting numbers btw 0-1 and converting format to float50
    for count in range(len(feature)):
        feature[count] = feature[count] / 255.0
        feature[count] = feature[count].astype("float32")

    ## convertin feature and label to numpy array
    feature = numpy.array(feature).reshape(-1, 48, 48, 1)
    label = numpy.array(label)

    cnn_model(feature, label)