def perceptronExample(file): file = ReadingFromFile.checkFile(file, "perceptron") data = ReadingFromFile.readDataFromFile(file, ',') # Podaci ucitani iz fajla trainingSet, testSet = CrossValidation.makeSets(data) x, t = Initializing.processData(trainingSet) t = Initializing.checkLabels(t, "perceptron") w, b = Initializing.initialParam(x) w, b = Perceptron.train(x, t, w, b) Plot.plotData(x, t) Plot.plotLine(x, w, b) plt.show()
def PassiveAggressiveAlgorithmExample(file): file = ReadingFromFile.checkFile(file, "passiveAggressive") data = ReadingFromFile.readDataFromFile(file, ',') trainingSet, testSet = CrossValidation.makeSets( data) # Napravimo trening i test set kTrainingSets, kValidSets = CrossValidation.kCrossValidationMakeSets( trainingSet, 5) # Napravimo k trening i test set-ova unakrsnom validacijom (k = 5) c = PassiveAggressiveAlgorithm.optC(kTrainingSets, kValidSets) w, b = PassiveAggressiveAlgorithm.crossTrain( kTrainingSets, kValidSets, c ) # Istreniramo k trening setova i kao rezultat vratimo najbolje w i najbolje b (ono w i b za koje je greska bila najmanja) x, t = Initializing.processData( testSet) # Rezultat crtamo i merimo nad test skupom podataka t = Initializing.checkLabels(t, "passiveAggressive") Plot.plotData(x, t) Plot.plotLine(x, w, b) plt.show()