Esempio n. 1
0
 def load_models(self):
     self.detect_model = TinyYOLOv3_onecls(self.inp_dets,
                                           device=self.device)
     self.pose_model = SPPE_FastPose(self.pose_backbone,
                                     self.inp_pose[0],
                                     self.inp_pose[1],
                                     device=self.device)
     self.tracker = Tracker(30, n_init=3)
     self.action_model = TSSTG(device=self.device)
                     default='cpu',
                     help='Device to run model on cpu or cuda.')
    args = par.parse_args()

    device = args.device
    # device= torch.args.device("cpu")

    # DETECTION MODEL.
    inp_dets = args.detection_input_size
    detect_model = TinyYOLOv3_onecls(inp_dets, device=device)

    # POSE MODEL.
    inp_pose = args.pose_input_size.split('x')
    inp_pose = (int(inp_pose[0]), int(inp_pose[1]))
    pose_model = SPPE_FastPose(args.pose_backbone,
                               inp_pose[0],
                               inp_pose[1],
                               device=device)

    # Tracker.
    max_age = 30
    tracker = Tracker(max_age=max_age, n_init=3)

    # Actions Estimate.
    action_model = TSSTG()

    resize_fn = ResizePadding(inp_dets, inp_dets)

    cam_source = args.camera
    if type(cam_source) is str and os.path.isfile(cam_source):
        # Use loader thread with Q for video file.
        cam = CamLoader_Q(cam_source, queue_size=1000,
Esempio n. 3
0
class Models:
    def __init__(self):
        self.inp_dets = 416
        self.inp_pose = (256, 192)
        self.pose_backbone = 'resnet50'
        self.show_detected = True
        self.show_skeleton = True
        self.device = 'cuda'

        self.load_models()

    def load_models(self):
        self.detect_model = TinyYOLOv3_onecls(self.inp_dets,
                                              device=self.device)
        self.pose_model = SPPE_FastPose(self.pose_backbone,
                                        self.inp_pose[0],
                                        self.inp_pose[1],
                                        device=self.device)
        self.tracker = Tracker(30, n_init=3)
        self.action_model = TSSTG(device=self.device)

    def kpt2bbox(self, kpt, ex=20):
        return np.array((kpt[:, 0].min() - ex, kpt[:, 1].min() - ex,
                         kpt[:, 0].max() + ex, kpt[:, 1].max() + ex))

    def process_frame(self, frame):
        detected = self.detect_model.detect(frame,
                                            need_resize=False,
                                            expand_bb=10)

        self.tracker.predict()
        for track in self.tracker.tracks:
            det = torch.tensor([track.to_tlbr().tolist() + [1.0, 1.0, 0.0]],
                               dtype=torch.float32)
            detected = torch.cat([detected, det],
                                 dim=0) if detected is not None else det

        detections = []
        if detected is not None:
            poses = self.pose_model.predict(frame, detected[:, 0:4],
                                            detected[:, 4])
            detections = [
                Detection(
                    self.kpt2bbox(ps['keypoints'].numpy()),
                    np.concatenate(
                        (ps['keypoints'].numpy(), ps['kp_score'].numpy()),
                        axis=1), ps['kp_score'].mean().numpy()) for ps in poses
            ]
            if self.show_detected:
                for bb in detected[:, 0:5]:
                    frame = cv2.rectangle(frame, (bb[0], bb[1]),
                                          (bb[2], bb[3]), (0, 0, 255), 1)

        self.tracker.update(detections)
        for i, track in enumerate(self.tracker.tracks):
            if not track.is_confirmed():
                continue
            track_id = track.track_id
            bbox = track.to_tlbr().astype(int)
            center = track.get_center().astype(int)

            action = 'pending..'
            clr = (0, 255, 0)
            if len(track.keypoints_list) == 30:
                pts = np.array(track.keypoints_list, dtype=np.float32)
                out = self.action_model.predict(pts, frame.shape[:2])
                action_name = self.action_model.class_names[out[0].argmax()]
                action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100)
                if action_name == 'Fall Down':
                    clr = (255, 0, 0)
                elif action_name == 'Lying Down':
                    clr = (255, 200, 0)

                track.actions = out

            if track.time_since_update == 0:
                if self.show_skeleton:
                    frame = draw_single(frame, track.keypoints_list[-1])
                frame = cv2.rectangle(frame, (bbox[0], bbox[1]),
                                      (bbox[2], bbox[3]), (0, 255, 0), 1)
                frame = cv2.putText(frame, str(track_id),
                                    (center[0], center[1]),
                                    cv2.FONT_HERSHEY_DUPLEX, 0.4, (255, 0, 0),
                                    2)
                frame = cv2.putText(frame, action, (bbox[0] + 5, bbox[1] + 15),
                                    cv2.FONT_HERSHEY_COMPLEX, 0.4, clr, 1)

        return frame
Esempio n. 4
0
from PoseEstimateLoader import SPPE_FastPose
from fn import vis_frame_fast

save_path = '../../Data/Home_new-pose+score.csv'

annot_file = '../../Data/Home_new.csv'  # from create_dataset_1.py
video_folder = '../Data/falldata/Home/Videos'
annot_folder = '../Data/falldata/Home/Annotation_files'  # bounding box annotation for each frame.

# DETECTION MODEL.
detector = TinyYOLOv3_onecls()

# POSE MODEL.
inp_h = 320
inp_w = 256
pose_estimator = SPPE_FastPose(inp_h, inp_w)

# with score.
columns = [
    'video', 'frame', 'Nose_x', 'Nose_y', 'Nose_s', 'LShoulder_x',
    'LShoulder_y', 'LShoulder_s', 'RShoulder_x', 'RShoulder_y', 'RShoulder_s',
    'LElbow_x', 'LElbow_y', 'LElbow_s', 'RElbow_x', 'RElbow_y', 'RElbow_s',
    'LWrist_x', 'LWrist_y', 'LWrist_s', 'RWrist_x', 'RWrist_y', 'RWrist_s',
    'LHip_x', 'LHip_y', 'LHip_s', 'RHip_x', 'RHip_y', 'RHip_s', 'LKnee_x',
    'LKnee_y', 'LKnee_s', 'RKnee_x', 'RKnee_y', 'RKnee_s', 'LAnkle_x',
    'LAnkle_y', 'LAnkle_s', 'RAnkle_x', 'RAnkle_y', 'RAnkle_s', 'label'
]


def normalize_points_with_size(points_xy, width, height, flip=False):
    points_xy[:, 0] /= width