Esempio n. 1
0
def icele():
    # 获取ec数据
    dics = ['ECMWF_HR\SKINT', 'ECMWF_HR\APCP', 'ECMWF_HR\SNOD']
    ectime = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)
          ]  # 20点的预报获取今天8:00的ec预报(此处可能存在问题,搞清12为5-8,还是8-11)
    lonlatset, dataset = [], []
    for dic in dics:
        lon, lat, data = Datainterface.micapsdata(ectime, dic, fh)
        lonlatset.append(lon, lat)
        for i in range(data.shape[0] - 1):
            # 此处参考233上的改动
            newdata = []
            if (np.isnan(data[i]).all() == True) and (i + 1 <= data.shape[0]):
                data[i] = data[i + 1] / 2
                data[i + 1] = data[i + 1] / 2
                newdata.append(
                    interp.interpolateGridData(data[i], lat, lon, glovar.lat,
                                               glovar.lon))
            else:
                newdata.append(
                    interp.interpolateGridData(data[i], lat, lon, glovar.lat,
                                               glovar.lon))
        dataset.append(np.array(newdata))  # 保存插值后的数据集,data形状应为(57,X, X)
    return dataset
Esempio n. 2
0
def main():
    snowpath, gpath, fpath, rainpath, savepath = Writefile.readxml(
        glovar.forestpath, 0)  # 积雪nc数据存放位置
    snow = snowdepth(snowpath)  # 积雪数据[10, 801, 1381]
    data, *_ = Weatherdata(glovar.forestpath)  # 森林火险数据
    ldtype = landtype(gpath, fpath)
    gindex, findex, mindex = firelevel(data, rainpath, snow, ldtype)  # 最终生成指数
    filetime = ecmwf.ecreptime()
    fh = range(10)
    fnames = ['_%03d' % i for i in fh]
    Writefile.write_to_nc(savepath,
                          gindex,
                          filetime=filetime,
                          fnames=fnames,
                          lat=glovar.lat,
                          lon=glovar.lon,
                          name='green')

    Writefile.write_to_nc(savepath,
                          findex,
                          filetime=filetime,
                          fnames=fnames,
                          lat=glovar.lat,
                          lon=glovar.lon,
                          name='forest')

    Writefile.write_to_nc(savepath,
                          mindex,
                          filetime=filetime,
                          fnames=fnames,
                          lat=glovar.lat,
                          lon=glovar.lon,
                          name='meteo')
Esempio n. 3
0
def main():
    saltedata = saltedata(path)
    snowpre = np.random.randint(0, 1, size=(801 * 1381, 1))
    snow = SnowDepth()
    rep = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)]
    region = [
        float(i) for i in ','.join(
            Writefile.readxml(
                r'/home/cqkj/QHTraffic/Product/Traffic/SNOD/config.xml',
                0)).split(',')
    ]
    new_lon = np.arange(region[0], region[2], region[-1])
    new_lat = np.arange(region[1], region[3], region[-1])
    lonlatset, dataset = [], []
    # 提取数据及经纬度(双重循环,看能否改进)
    for dic in snow.dics:
        lon, lat, data = Datainterface.micapsdata(rep, dic, fh)
        lonlatset.append((lon, lat))
        for i in range(data.shape[0] - 1):
            if (np.isnan(data[i]).all() == True) and (i + 1 <= data.shape[0]):
                data[i] = data[i + 1] / 2
                data[i + 1] = data[i + 1] / 2
                interp.interpolateGridData(data, lat, lon, new_lat, new_lon)
            else:
                interp.interpolateGridData(data, lat, lon, new_lat, new_lon)
        dataset.append(data)  # 保存插值后的数据集
    depthgrid = snow.clcsd(dataset, new_lat, new_lon, saltedata, snowpre)
    snow.write(depthgrid, new_lat, new_lon)
    dangerindex = snow.clcindex(depthgrid, new_lat, new_lon)
    snow.write(dangerindex, type=1)
Esempio n. 4
0
def presnow():
    # 得到前一时刻积雪深度
    ectime = ecmwf.ecreptime()
    fh = [0]
    dic = 'ECMWF_HR/SNOD'
    lon, lat, data = Datainterface.micapsdata(ectime, dic, fh)
    return interp.interpolateGridData(data, lat, lon, glovar.lat, glovar.lon)
Esempio n. 5
0
def snowData():
    # 获取ec数据信息(气温、降水、地温、湿度、积雪深度)
    ectime = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)]  # 20点的预报获取今天8:00的ec预报
    # *_, dics = Writefile.readxml(glovar.trafficpath, 0)
    *_, dics = Writefile.readxml(
        r'/home/cqkj/LZD/Product/Product/config/Traffic.xml', 0)
    dicslist = dics.split(',')[:-1]
    lonlatset, dataset = [], []
    for dic in dicslist:
        newdata = []
        lon, lat, data = Datainterface.micapsdata(ectime, dic, fh)
        lonlatset.append((lon, lat))
        for i in range(data.shape[0] - 1):
            if (np.isnan(data[i]).all() == True) and (i + 1 <= data.shape[0]):
                data[i] = data[i + 1] / 2
                data[i + 1] = data[i + 1] / 2
                newdata.append(
                    interp.interpolateGridData(data[i], lat, lon, glovar.lat,
                                               glovar.lon))
            else:
                newdata.append(
                    interp.interpolateGridData(data[i], lat, lon, glovar.lat,
                                               glovar.lon))
        newdata = np.array(newdata)
        # newdata[newdata<0] = 0                    # 保证数据正确性
        dataset.append(newdata)  # 保存插值后的数据集
    return np.array(dataset)
Esempio n. 6
0
def write(path, data, name, lat=None, lon=None, type=0):
    filetime = ecmwf.ecreptime()
    fh = range(3, 169, 3)
    fnames = ['_%03d' % i for i in fh]
    if type == 0:
        Writefile.write_to_nc(path, data, lat, lon, name, fnames, filetime)
    else:
        Writefile.write_to_csv(path, data, name, fnames, filetime)
Esempio n. 7
0
 def write(self, data, lat=None, lon=None, type=0):
     filetime = ecmwf.ecreptime()
     fh = range(3, 169, 3)
     fnames = ['_%03d' % i for i in fh]
     name = 'Snow'
     if type == 0:
         Writefile.write_to_nc(self.savepath, data, lat, lon, name, fnames,
                               filetime)
     else:
         Writefile.write_to_csv(self.indexpath, data, 'SnowIndex', fnames,
                                filetime)
Esempio n. 8
0
def main():
    # 计算出来灾害落区
    # dataset 为获取的各气象要素等级预报
    ######读取nc要素文件#####
    varname = ['Rain', 'Snow_depth', 'Wind', 'Roadic']
    datasets = [
        xr.open_mfdataset(path, concat_dim='time').values
        for path, name in zip(filelist(), varname)
    ]
    rain, snow, wind, roadic = datasets
    roadic *= 8
    snow *= 4
    wind *= 2
    rain *= 1
    ########################
    disaster = roadic + snow + wind + rain
    ########################
    configpath = r'../config/disaster.xml'
    savepath = Writefile.readxml(configpath, 1)[-1]
    filetime = ecmwf.ecreptime()
    fh = range(3, 169, 3)
    fnames = ['_%03d' % i for i in fh]
    Writefile.write_to_nc(savepath, disaster, glovar.lat, glovar.lon,
                          'Disaster', fnames, filetime)
Esempio n. 9
0
def main():
    ice = Roadic()
    rep = ecmwf.ecreptime()
    fh = [i for i in range(12, 181, 3)]
    '''
    region = [float(i) for i in ','.join(Writefile.readxml(r'/home/cqkj/QHTraffic/Product/Traffic/ROADIC/config.xml', 0)).split(',')]
    new_lon = np.arange(region[0], region[2], region[-1])
    new_lat = np.arange(region[1], region[3], region[-1])
    '''
    dataset = icele()
    icgrid = ice.icegrid(dataset, glovar.lat, glovar.lon)
    # savepath, indexpath = Writefile.readxml(r'/home/cqkj/QHTraffic/Product/Traffic/ROADIC/config.xml', 1)[2:]
    savepath, indexpath, cmpath, _ = Writefile.readxml(glovar.trafficpath,
                                                       4)[2:]
    # write(savepath, icgrid, 'Roadic', new_lat, new_lon)               # 先保存厚度网格数据
    write(savepath, icgrid, 'Roadic', glovar.lat, glovar.lon)
    # iceroad = ice.depth2onezero(icgrid, new_lat, new_lon)
    iceroad = ice.depth2onezero(icgrid, glovar.lat, glovar.lon)
    ################################################################################
    # 获取cimiss数据集,此处仅为读取,实况数据获取及保存由另一程序实现
    cmissdata = np.loadtxt(cmpath, delimiter=',')
    icedays = RoadIceindex(cmissdata, iceroad)
    roadicing = icedays.iceday()
    write(indexpath, roadicing, 'RoadicIndex', type=1)