def fitsdata_to_images(fdata, slices=slices, imgshape=imgshape): dprint(3, "fitsdata_to_images", slices, fdata.shape); t0 = time.time() # reshape to collapse into a 3D cube img = [fdata[i].reshape(imgshape) for i in slices] dprint(3, "collecting images took", time.time() - t0, "secs"); t0 = time.time() return img
def regenerate(self): Purr.progressMessage("reading %s" % self.dp.filename, sub=True) # init fitsfile to None, so that _read() above is forced to re-read it fitsfile = fits.open(self.dp.fullpath) header = fitsfile[0].header dprintf(3, "beginning render of", self.dp.fullpath); t0 = time.time() # write out FITS header self.headerfile, path, uptodate = self.subproduct("-fitsheader.html") if not uptodate: title = "FITS header for %s" % self.dp.filename html = """<HTML><BODY><TITLE>%s</TITLE> <H2>%s</H2> <PRE>""" % (title, title) for line in header.ascard: line = str(line).replace("<", "<").replace(">", ">") html += line + "\n" html += """ </PRE></BODY></HTML>\n""" try: open(path, "w").write(html) except: print("Error writing file %s" % path) traceback.print_exc() self.headerfile = None # figure out number of images to include ndim = header['NAXIS'] fitsshape = [header['NAXIS%d' % i] for i in range(1, ndim + 1)] self.cubesize = 'x'.join(map(str, fitsshape)) if ndim < 2: raise TypeError("can't render one-dimensional FITS files""") elif ndim == 2: fitsdata_to_images = lambda fdata: [fdata] nplanes = 1 else: ax1 = ax2 = None # find the X/Y axes, by looking at CTYPEx # note that the array axes are in reverse order. I.e. if X is FITS axis 1 and Y is axis 2, # the array will be of e.g. shape 1,1,NY,NX, while fitsshape is [NX,NY,1,1] for i in range(1, ndim + 1): ctype = header['CTYPE%d' % i] if [prefix for prefix in ("RA", "GLON", "ELON", "HLON", "SLON") if ctype.startswith(prefix)] \ or ctype in ("L", "X"): ax1 = ndim - i elif [prefix for prefix in ("DEC", "GLAT", "ELAT", "HLAT", "SLAT") if ctype.startswith(prefix)] \ or ctype in ("M", "Y"): ax2 = ndim - i if ax1 is None or ax2 is None: ax1, ax2 = 1, 0 arrshape = fitsshape[-1::-1] # this is how many planes we render, at most nplanes = max(self.getOption('fits-nimage'), 1) slices = [] baseslice = [0] * ndim baseslice[ax1] = baseslice[ax2] = None imgshape = (arrshape[min(ax1, ax2)], arrshape[max(ax1, ax2)]) while len(slices) < nplanes: slices.append(tuple(baseslice)) for idim in range(ndim): if baseslice[idim] != None: baseslice[idim] += 1 if baseslice[idim] < arrshape[idim]: break else: baseslice[idim] = 0 else: break nplanes = len(slices) # OK, slices contains how many slices to return def fitsdata_to_images(fdata, slices=slices, imgshape=imgshape): dprint(3, "fitsdata_to_images", slices, fdata.shape); t0 = time.time() # reshape to collapse into a 3D cube img = [fdata[i].reshape(imgshape) for i in slices] dprint(3, "collecting images took", time.time() - t0, "secs"); t0 = time.time() return img # OK, now cycle over all images dprintf(3, "%s: rendering %d planes\n", self.dp.fullpath, nplanes); t0 = time.time() self.imgrec = [None] * nplanes # get number of bins (0 or None means no histogram) nbins = self.getOption("fits-hist-nbin") # see if histogram clipping is enabled, set hclip to None if not self.hclip = hclip = self.getOption("fits-hist-clip") if hclip == 1 or not nbins: hclip = None tsize_img = self.getOption("image-thumbnail-width"), self.getOption("image-thumbnail-height") tsize_hist = self.getOption("hist-thumbnail-width"), self.getOption("hist-thumbnail-height") self.hist_size = self.getOption("hist-width"), self.getOption("hist-height") # filled once we read the data images = None for num_image in range(nplanes): # do we have a cached status record for this image? recfile, recpath, uptodate = self.subproduct("-%d-stats" % num_image) if uptodate: dprintf(3, "%s(%d): stats file %s up-to-date, reading in\n", self.dp.fullpath, num_image, recfile) try: self.imgrec[num_image] = pickle.load(file(recpath)) continue except: print("Error reading stats file %s, regenerating everything" % recpath) traceback.print_exc() # out of date, so we regenerate everything # build up record of stuff associated with this image rec = self.imgrec[num_image] = Kittens.utils.recdict() # generate paths for images rec.fullimage, img_path = self.subproductPath("-%d-full.png" % num_image) rec.thumbnail, img_thumb = self.subproductPath("-%d-thumb.png" % num_image) if pychart: rec.histogram_full, hf_path = self.subproductPath("-%d-hist-full.png" % num_image) rec.histogram_zoom, hz_path = self.subproductPath("-%d-hist-zoom.png" % num_image) rec.histogram_full_thumb, hf_thumb = self.subproductPath("-%d-hist-full-thumb.png" % num_image) rec.histogram_zoom_thumb, hz_thumb = self.subproductPath("-%d-hist-zoom-thumb.png" % num_image) # need to read in data at last if not images: dprint(3, "reading data"); t0 = time.time() fitsdata = fitsfile[0].data dprint(3, "reading data took", time.time() - t0, "secs"); t0 = time.time() fitsfile = None images = fitsdata_to_images(fitsdata) dprint(3, "converting to images took", time.time() - t0, "secs"); t0 = time.time() fitsdata = None data = images[num_image] title = self.dp.filename if nplanes > 1: title += ", plane #%d" % num_image Purr.progressMessage("rendering %s" % title, sub=True) # min/max data values dprint(3, "rendering plane", num_image); t0 = time.time() datamask = ~numpy.isfinite(data) dprint(3, "making mask took", time.time() - t0, "secs"); t0 = time.time() datamin, datamax = scipy.ndimage.measurements.extrema(data, datamask, False)[:2] dprint(3, "computing min/max took", time.time() - t0, "secs"); t0 = time.time() rec.datamin, rec.datamax = datamin, datamax # mean and sigma rec.datamean = scipy.ndimage.measurements.mean(data, datamask, False) dprint(3, "computing mean took", time.time() - t0, "secs"); t0 = time.time() rec.datastd = scipy.ndimage.measurements.standard_deviation(data, datamask, False) dprint(3, "computing std took", time.time() - t0, "secs"); t0 = time.time() # thumbnail files will be "" if images are small enough to be inlined. # these will be None if no histogram clipping is applied rec.clipmin, rec.clipmax = None, None dprintf(3, "%s plane %d: datamin %g, datamax %g\n", self.dp.fullpath, num_image, rec.datamin, rec.datamax) # compute histogram of data only if this is enabled, # and either pychart is available (so we can produce plots), or histogram clipping is in effect if datamin != datamax and nbins and (pychart or hclip): dprintf(3, "%s plane %d: computing histogram\n", self.dp.fullpath, num_image) counts = scipy.ndimage.measurements.histogram(data, datamin, datamax, nbins, labels=datamask, index=False); # needed for 1.3+ to avoid warnings edges = datamin + (datamax - datamin) * (numpy.arange(nbins, dtype=float) + .5) / nbins dprint(3, "computing histogram took", time.time() - t0, "secs"); t0 = time.time() # render histogram if pychart: try: self._make_histogram(hf_path, "Histogram of %s" % title, edges, counts) dprint(3, "rendering histogram took", time.time() - t0, "secs"); t0 = time.time() except: print("Error rendering histogram %s" % hf_path) traceback.print_exc() rec.histogram_full = None # if histogram was rendered, make a thumbnail if rec.histogram_full: self.makeThumb(hf_path, hf_thumb, tsize_hist) else: rec.histogram_full_thumb = None # now, compute clipped data if needed if hclip: # find max point in histogram ic = counts.argmax() # compute number of points that need to be included, given the clip factor target_count = int(data.size * hclip) ih0 = ih1 = ic totcount = counts[ic] # find how many bins to include around ic, stopping when we hit the edge while totcount < target_count: if ih0 > 0: ih0 -= 1 totcount += counts[ih0] if ih1 < nbins - 1: ih1 += 1 totcount += counts[ih1] # just in case if ih0 <= 0 and ih1 >= nbins - 1: break # and these are the clipping limits datamin = float(edges[ih0]) if ih1 >= nbins - 1: ih1 = nbins - 1; # and datamax is already the clipping limit else: ih1 += 1 datamax = float(edges[ih1]) rec.clipmin, rec.clipmax = datamin, datamax dprintf(3, "%s plane %d: clipping to %g,%g\n", self.dp.fullpath, num_image, rec.clipmin, rec.clipmax) # render zoomed histogram if pychart: if rec.clipmax != rec.clipmin: zcounts = scipy.ndimage.measurements.histogram(data, rec.clipmin, rec.clipmax, nbins, labels=datamask, index=False); # needed for 1.3+ to avoid warnings zedges = rec.clipmin + (rec.clipmax - rec.clipmin) * ( numpy.arange(nbins, dtype=float) + .5) / nbins try: self._make_histogram(hz_path, "Histogram zoom of %s" % title, zedges, zcounts) dprint(3, "rendering zoomed histogram took", time.time() - t0, "secs"); t0 = time.time() except: print("Error rendering histogram %s" % hz_path) traceback.print_exc() rec.histogram_zoom = None else: # no meaningful zoomed area to render rec.histogram_zoom = None # if histogram was rendered, make a thumbnail if rec.histogram_zoom: histogram_zoom_thumb = self.makeThumb(hz_path, hz_thumb, tsize_hist) else: rec.histogram_zoom_thumb = None # clip data data = numpy.clip(data, datamin, datamax) # end of clipping # else no histogram for whatever reason else: rec.histogram_full = rec.histogram_zoom = rec.histogram_full_thumb = rec.histogram_zoom_thumb = None # ok, data has been clipped if need be. Rescale it to 8-bit integers t0 = time.time() datarng = datamax - datamin if datarng: data = (data - datamin) * (255 / datarng) data = data.round().astype('uint8') data[datamask] = 255 else: data = numpy.zeros(data.shape, dtype='uint8') dprintf(3, "%s plane %d: rescaled to %d:%d in %f seconds\n", self.dp.fullpath, num_image, data.min(), data.max(), time.time() - t0); t0 = time.time() # generate PNG image img = None try: img = PIL.Image.frombuffer('L', data.shape[-1::-1], numpy.getbuffer(data), "raw", 'L', 0, -1) dprint(3, "image frombuffer took", time.time() - t0, "secs"); t0 = time.time() # img = PIL.Image.new('L',data.shape) # dprint(3,"new image took",time.time()-t0,"secs"); t0 = time.time() # imgdata = data.reshape((data.size,)) # dprint(3,"data.reshape took",time.time()-t0,"secs"); t0 = time.time() # img.putdata(imgdata) # dprint(3,"putdata took",time.time()-t0,"secs"); t0 = time.time() # img = img.transpose(PIL.Image.FLIP_TOP_BOTTOM) # dprint(3,"transpose took",time.time()-t0,"secs"); t0 = time.time() img.save(img_path, 'PNG') dprint(3, "saving took", time.time() - t0, "secs"); t0 = time.time() except: print("Error rendering image %s" % path) traceback.print_exc() rec.fullimage = img = None # if image was rendered, make a thumbnail if rec.fullimage: thumb = self.makeThumb(img_path, img_thumb, tsize_img, img=img) dprint(3, "rendering thumbnail took", time.time() - t0, "secs"); t0 = time.time() # None means thumbnail failed if thumb is None: rec.thumbnail = None # else perhaps image is its own thumbnail elif thumb is img_path: rec.thumbnail = rec.fullimage else: rec.thumbnail = None # write stats try: pickle.dump(rec, file(recpath, 'w')) except: print("Error writing stats file %s" % recpath) traceback.print_exc()
# out of date, so we regenerate everything # build up record of stuff associated with this image rec = self.imgrec[num_image] = Kittens.utils.recdict(); # generate paths for images rec.fullimage,img_path = self.subproductPath("-%d-full.png"%num_image); rec.thumbnail,img_thumb = self.subproductPath("-%d-thumb.png"%num_image); if pychart: rec.histogram_full,hf_path = self.subproductPath("-%d-hist-full.png"%num_image); rec.histogram_zoom,hz_path = self.subproductPath("-%d-hist-zoom.png"%num_image); rec.histogram_full_thumb,hf_thumb = self.subproductPath("-%d-hist-full-thumb.png"%num_image); rec.histogram_zoom_thumb,hz_thumb = self.subproductPath("-%d-hist-zoom-thumb.png"%num_image); # need to read in data at last if not images: dprint(3,"reading data"); t0 = time.time(); fitsdata = fitsfile[0].data; dprint(3,"reading data took",time.time()-t0,"secs"); t0 = time.time(); fitsfile = None; images = fitsdata_to_images(fitsdata); dprint(3,"converting to images took",time.time()-t0,"secs"); t0 = time.time(); fitsdata = None; data = images[num_image]; title = self.dp.filename; if nplanes > 1: title += ", plane #%d"%num_image; Purr.progressMessage("rendering %s"%title,sub=True); # min/max data values